Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Dec;68(12):2977–2981. doi: 10.1073/pnas.68.12.2977

Bacterial Mutants in Which the Gene N Function of Bacteriophage Lambda Is Blocked Have an Altered RNA Polymerase

C P Georgopoulos 1,*
PMCID: PMC389573  PMID: 4943550

Abstract

Bacterial mutants have been isolated, called groN, that block phage development by interference with the action of the product of the phage N gene. λtrp phages, which depend on the N product for the synthesis of tryptophan enzymes, do not make these enzymes in groN bacteria. Two type of phage mutants have been isolated that can overcome the groN block. One type makes an altered N product, the other contains an N-bypass mutation.

The groN mutation is closely linked to the rifamycin-resistance locus in Escherichia coli. Purified RNA polymerase from the groN mutant is less activated by salt and more sensitive to rifamycin than is the polymerase from gro+. This suggests that the groN mutation produces a structural change in the bacterial RNA polymerase such that it can no longer interact properly with the phage N product.

Keywords: GroN, rifamycin, N-gene action, E. coli, DNA transcription

Full text

PDF
2978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
  2. Court D., Sato K. Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology. 1969 Oct;39(2):348–352. doi: 10.1016/0042-6822(69)90060-9. [DOI] [PubMed] [Google Scholar]
  3. Eisen H., Brachet P., Pereira da Silva L., Jacob F. Regulation of repressor expression in lambda. Proc Natl Acad Sci U S A. 1970 Jul;66(3):855–862. doi: 10.1073/pnas.66.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ito J., Yanofsky C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: Comparative studies on the complex and the subunits. J Bacteriol. 1969 Feb;97(2):734–742. doi: 10.1128/jb.97.2.734-742.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kourilsky P., Marcaud L., Sheldrick P., Luzzati D., Gros F. Studies of the messenger RNA of bacteriophage lambda, I. Various species synthesized early after induction of the prophage. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1013–1020. doi: 10.1073/pnas.61.3.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kumar S., Bovre K., Guha A., Hradecna Z., Maher V. R., Szybalski W. Orientation and control of transcription in E. coli phage lambda. Nature. 1969 Mar 1;221(5183):823–825. doi: 10.1038/221823a0. [DOI] [PubMed] [Google Scholar]
  7. Lancini G., Pallanza R., Silvestri L. G. Relationships between bactericidal effect and inhibition of ribonucleic acid nucleotidyltransferase by rifampicin in Escherichia coli K-12. J Bacteriol. 1969 Feb;97(2):761–768. doi: 10.1128/jb.97.2.761-768.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Losick R., Shorenstein R. G., Sonenshein A. L. Structural alteration of RNA polymerase during sporulation. Nature. 1970 Aug 29;227(5261):910–913. doi: 10.1038/227910a0. [DOI] [PubMed] [Google Scholar]
  9. Maitra U. Induction of a new RNA polymerase in Escherichia coli infected with bacteriophage T3. Biochem Biophys Res Commun. 1971 Apr 16;43(2):443–450. doi: 10.1016/0006-291x(71)90773-x. [DOI] [PubMed] [Google Scholar]
  10. Pero J. Location of the phage lambda gene responsible for turning off lambda-exonuclease synthesis. Virology. 1970 Jan;40(1):65–71. doi: 10.1016/0042-6822(70)90379-x. [DOI] [PubMed] [Google Scholar]
  11. Pironio M., Ghysen A. A bacterial mutation which affects recognition of the N gene product of bacteriophage lambda. Mol Gen Genet. 1970;108(4):374–375. doi: 10.1007/BF00267775. [DOI] [PubMed] [Google Scholar]
  12. Rabussay D., Zillig W. A rifampicin resistent rna-polymerase from E. coli altered in the beta-subunit. FEBS Lett. 1969 Oct 21;5(2):104–106. doi: 10.1016/0014-5793(69)80305-4. [DOI] [PubMed] [Google Scholar]
  13. Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
  14. Scott J. R. Genetic studies on bacteriophage P1. Virology. 1968 Dec;36(4):564–574. doi: 10.1016/0042-6822(68)90188-8. [DOI] [PubMed] [Google Scholar]
  15. Seifert W., Rabussay D., Zillig W. On the chemical nature of alteration and modification of DNA dependent RNA polymerase of E. coli after T4 infection. FEBS Lett. 1971 Aug 15;16(3):175–179. doi: 10.1016/0014-5793(71)80125-4. [DOI] [PubMed] [Google Scholar]
  16. Signer E. R., Manly K. F., Brunstetter M. A. Deletion mapping of the c-3-N region of bacteriophage. Virology. 1969 Sep;39(1):137–141. doi: 10.1016/0042-6822(69)90356-0. [DOI] [PubMed] [Google Scholar]
  17. Spiegelman W. G. Two states of expression of genes cl, rex, and N in lambda. Virology. 1971 Jan;43(1):16–33. doi: 10.1016/0042-6822(71)90220-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES