Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Nov;69(11):3485–3489. doi: 10.1073/pnas.69.11.3485

Specific Glycine-Accumulating Synaptosomes in the Spinal Cord of Rats

Alberto Arregui 1,2,3,4,5, William J Logan 1,2,3,4,5, James P Bennett 1,2,3,4,5,*, Solomon H Snyder 1,2,3,4,5,
PMCID: PMC389798  PMID: 4508336

Abstract

Subcellular fractionation of rat spinal cord on continuous sucrose density gradients provides evidence for the existence of a specific synaptosomal fraction (enriched in pinched-off nerve endings) that accumulates glycine selectively by way of a high-affinity transport system. The particles in this fraction sediment to a less-dense portion of sucrose gradients than do particles that accumulate neutral, basic, aromatic, and acidic amino acids. Particles accumulating γ-aminobutyric acid are even less-dense than those storing exogenous glycine. The glycine-specific synaptosomal fraction also exists in the brain stem but not in the cerebral cortex. These findings provide neurochemical support for the suggestion that glycine has a specialized synaptic function, perhaps as neurotransmitter, in mammalian spinal cord.

Keywords: neurotransmitters, glutamate, neutral inhibition, γ-aminobutyric acid

Full text

PDF
3486

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aprison M. H., Werman R. A combined neurochemical and neurophysiological approach to identification of central nervous system transmitters. Neurosci Res (N Y) 1968;1(0):143–174. [PubMed] [Google Scholar]
  2. Aprison M. H., Werman R. The distribution of glycine in cat spinal cord and roots. Life Sci. 1965 Nov;4(21):2075–2083. doi: 10.1016/0024-3205(65)90325-5. [DOI] [PubMed] [Google Scholar]
  3. Blasberg R., Levi G., Lajtha A. A comparison of inhibition of steady state, new transport, and exchange fluxes of amino acids in brain slices. Biochim Biophys Acta. 1970 Jun 2;203(3):464–483. doi: 10.1016/0005-2736(70)90186-0. [DOI] [PubMed] [Google Scholar]
  4. Curtis D. R., Hösli L., Johnston G. A. A pharmacological study of the depression of spinal neurones by glycine and related amino acids. Exp Brain Res. 1968;6(1):1–18. doi: 10.1007/BF00235443. [DOI] [PubMed] [Google Scholar]
  5. Curtis D. R., Hösli L., Johnston G. A. Inhibition of spinal neurons by glycine. Nature. 1967 Sep 30;215(5109):1502–1503. doi: 10.1038/2151502a0. [DOI] [PubMed] [Google Scholar]
  6. Curtis D. R., Hösli L., Johnston G. A., Johnston I. H. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp Brain Res. 1968;5(3):235–258. doi: 10.1007/BF00238666. [DOI] [PubMed] [Google Scholar]
  7. Davidoff R. A., Shank R. P., Graham L. T., Jr, Aprison M. H., Werman R. Association of glycine with spinal interneurones. Nature. 1967 May 13;214(5089):680–681. doi: 10.1038/214680a0. [DOI] [PubMed] [Google Scholar]
  8. Graham L. T., Jr, Shank R. P., Werman R., Aprison M. H. Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, gamma-aminobutyric acid, glycine and glutamine. J Neurochem. 1967 Apr;14(4):465–472. doi: 10.1111/j.1471-4159.1967.tb09545.x. [DOI] [PubMed] [Google Scholar]
  9. Green A. I., Snyder S. H., Iversen L. L. Separation of catecholamine-storing synaptosomes in different regions of rat brain. J Pharmacol Exp Ther. 1969 Aug;168(2):264–271. [PubMed] [Google Scholar]
  10. Hammerstad J. P., Murray J. E., Cutler R. W. Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of ( 14 C)glycine and 3 H-GABA. Brain Res. 1971 Dec 24;35(2):357–367. doi: 10.1016/0006-8993(71)90480-x. [DOI] [PubMed] [Google Scholar]
  11. Hopkin J., Neal M. J. Effect of electrical stimulation and high potassium concentrations on the effux of (14C) glycine from slices of spinal cord. Br J Pharmacol. 1971 Jun;42(2):215–223. doi: 10.1111/j.1476-5381.1971.tb07102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hökfelt T., Ljungdahl A. Light and electron microscopic autoradiography on spinal cord slices after incubation with labeled glycine. Brain Res. 1971 Sep 10;32(1):189–194. doi: 10.1016/0006-8993(71)90163-6. [DOI] [PubMed] [Google Scholar]
  13. Iversen L. L., Johnston G. A. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem. 1971 Oct;18(10):1939–1950. doi: 10.1111/j.1471-4159.1971.tb09600.x. [DOI] [PubMed] [Google Scholar]
  14. Iversen L. L., Snyder S. H. Synaptosomes: different populations storing catecholamines and gamma-aminobutyric acid in homogenates of rat brain. Nature. 1968 Nov 23;220(5169):796–798. doi: 10.1038/220796a0. [DOI] [PubMed] [Google Scholar]
  15. Johnston G. A., Iversen L. L. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J Neurochem. 1971 Oct;18(10):1951–1961. doi: 10.1111/j.1471-4159.1971.tb09601.x. [DOI] [PubMed] [Google Scholar]
  16. Johnston G. A. The intraspinal distribution of some depressant amino acids. J Neurochem. 1968 Sep;15(9):1013–1017. doi: 10.1111/j.1471-4159.1968.tb11644.x. [DOI] [PubMed] [Google Scholar]
  17. Kuhar M. J., Green A. I., Snyder S. H., Gfeller E. Separation of synaptosomes storing catecholamines and gamma-aminobutyric acid in rat corpus striatum. Brain Res. 1970 Jul 29;21(3):405–417. doi: 10.1016/0006-8993(70)90420-8. [DOI] [PubMed] [Google Scholar]
  18. Kuhar M. J., Shaskan E. G., Snyder S. H. The subcellular distribution of endogenous and exogenous serotonin in brain tissue: comparison of synaptosomes storing serotonin, norepinephrine, and gamma-aminobutyric acid. J Neurochem. 1971 Mar;18(3):333–343. doi: 10.1111/j.1471-4159.1971.tb11962.x. [DOI] [PubMed] [Google Scholar]
  19. Kuhar M. J., Snyder S. H. The subcellular distribution of free H3-glutamic acid in rat cerebral cortical slices. J Pharmacol Exp Ther. 1970 Jan;171(1):141–152. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lemkey-Johnston N., Dekirmenjian H. The identification of fractions enriched in nonmyelinated axons from rat whole brain. Exp Brain Res. 1970 Nov 26;11(4):392–410. doi: 10.1007/BF00237913. [DOI] [PubMed] [Google Scholar]
  22. Logan W. J., Snyder S. H. High affinity uptake systems for glycine, glutamic and aspaspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 1972 Jul 20;42(2):413–431. doi: 10.1016/0006-8993(72)90540-9. [DOI] [PubMed] [Google Scholar]
  23. Logan W. J., Snyder S. H. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature. 1971 Dec 3;234(5327):297–299. doi: 10.1038/234297b0. [DOI] [PubMed] [Google Scholar]
  24. Matus A. I., Dennison M. E. Autoradiographic localisation of tritiated glycine at 'flat-vesicle' synapses in spinal cord. Brain Res. 1971 Sep 10;32(1):195–197. doi: 10.1016/0006-8993(71)90164-8. [DOI] [PubMed] [Google Scholar]
  25. Neal M. J., Pickles H. G. Uptake of 14C glycine by spinal cord. Nature. 1969 May 17;222(5194):679–680. doi: 10.1038/222679a0. [DOI] [PubMed] [Google Scholar]
  26. WURTMAN R. J., AXELROD J. A SENSITIVE AND SPECIFIC ASSAY FOR THE ESTIMATION OF MONOAMINE OXIDASE. Biochem Pharmacol. 1963 Dec;12:1439–1441. doi: 10.1016/0006-2952(63)90215-6. [DOI] [PubMed] [Google Scholar]
  27. Werman R., Davidoff R. A., Aprison M. H. Inhibitory of glycine on spinal neurons in the cat. J Neurophysiol. 1968 Jan;31(1):81–95. doi: 10.1152/jn.1968.31.1.81. [DOI] [PubMed] [Google Scholar]
  28. Whittaker V. P. The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol. 1965;15:39–96. doi: 10.1016/0079-6107(65)90004-0. [DOI] [PubMed] [Google Scholar]
  29. Whittaker V. P. The morphology of fractions of rat forebrain synaptosomes separated on continuous sucrose density gradients. Biochem J. 1968 Jan;106(2):412–417. doi: 10.1042/bj1060412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wofsey A. R., Kuhar M. J., Snyder S. H. A unique synaptosomal fraction, which accumulates glutamic and aspartic acids, in brain tissue. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1102–1106. doi: 10.1073/pnas.68.6.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES