Abstract
An electrochemical study of hydroxide- and methoxide-ligated iron(III) tetraphenylporphyrins possessing ortho-phenyl substituents that block mu-oxo dimer formation has been carried out. Ligation by these strongly basic oxyanions promotes the formation of iron(IV)-oxo porphyrins upon one-electron oxidation. Further one-electron oxidation of the latter provides the iron(IV)-oxo porphyrin pi-cation radical. These results are discussed in terms of chemical model studies and the enzymatic intermediate compounds I and II of the peroxidases.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dolphin D., Forman A., Borg D. C., Fajer J., Felton R. H. Compounds I of catalase and horse radish peroxidase: pi-cation radicals. Proc Natl Acad Sci U S A. 1971 Mar;68(3):614–618. doi: 10.1073/pnas.68.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felton R. H., Owen G. S., Dolphin D., Fajer J. Iron(IV) porphyrins. J Am Chem Soc. 1971 Nov;93(23):6332–6334. doi: 10.1021/ja00752a091. [DOI] [PubMed] [Google Scholar]
- Felton R. H., Owen G. S., Dolphin D., Forman A., Borg D. C., Fajer J. Oxidation of ferric porphyrins. Ann N Y Acad Sci. 1973;206:504–515. doi: 10.1111/j.1749-6632.1973.tb43233.x. [DOI] [PubMed] [Google Scholar]
- Hayashi Y., Yamazaki I. The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem. 1979 Sep 25;254(18):9101–9106. [PubMed] [Google Scholar]
- Hoffman A. B., Collins D. M., Day V. W., Fleischer E. B., Srivastava T. S., Hoard J. L. The crystal structure and molecular stereochemistry of -oxo-bis( , , , -tetraphenylporphinatoiron (3)). J Am Chem Soc. 1972 May 17;94(10):3620–3626. doi: 10.1021/ja00765a060. [DOI] [PubMed] [Google Scholar]
- Kadish K. M., Morrison M. M., Constant L. A., Dickens L., Davis D. G. A study of solvent and substituent effects on the redox potentials and electron-transfer rate constants of substituted iron meso-tetraphenylporphyrins. J Am Chem Soc. 1976 Dec 22;98(26):8387–8390. doi: 10.1021/ja00442a013. [DOI] [PubMed] [Google Scholar]
- Morrison M., Schonbaum G. R. Peroxidase-catalyzed halogenation. Annu Rev Biochem. 1976;45:861–888. doi: 10.1146/annurev.bi.45.070176.004241. [DOI] [PubMed] [Google Scholar]
- Moss T. H., Ehrenberg A., Bearden A. J. Mössbauer spectroscopic evidence for the electronic configuration of iron in horseradish peroxidase and its peroxide derivatives. Biochemistry. 1969 Oct;8(10):4159–4162. doi: 10.1021/bi00838a037. [DOI] [PubMed] [Google Scholar]
- Roberts J. E., Hoffman B. M., Rutter R., Hager L. P. Electron-nuclear double resonance of horseradish peroxidase compound I. Detection of the porphyrin pi-cation radical. J Biol Chem. 1981 Mar 10;256(5):2118–2121. [PubMed] [Google Scholar]
- Schonbaum G. R., Lo S. Interaction of peroxidases with aromatic peracids and alkyl peroxides. Product analysis. J Biol Chem. 1972 May 25;247(10):3353–3360. [PubMed] [Google Scholar]
- Schulz C. E., Devaney P. W., Winkler H., Debrunner P. G., Doan N., Chiang R., Rutter R., Hager L. P. Horseradish peroxidase compound I: evidence for spin coupling between the heme iron and a 'free' radical. FEBS Lett. 1979 Jul 1;103(1):102–105. doi: 10.1016/0014-5793(79)81259-4. [DOI] [PubMed] [Google Scholar]