Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jul;82(13):4301–4305. doi: 10.1073/pnas.82.13.4301

Stabilization of higher-valent states of iron porphyrin by hydroxide and methoxide ligands: electrochemical generation of iron(IV)-oxo porphyrins.

W A Lee, T S Calderwood, T C Bruice
PMCID: PMC390401  PMID: 3859865

Abstract

An electrochemical study of hydroxide- and methoxide-ligated iron(III) tetraphenylporphyrins possessing ortho-phenyl substituents that block mu-oxo dimer formation has been carried out. Ligation by these strongly basic oxyanions promotes the formation of iron(IV)-oxo porphyrins upon one-electron oxidation. Further one-electron oxidation of the latter provides the iron(IV)-oxo porphyrin pi-cation radical. These results are discussed in terms of chemical model studies and the enzymatic intermediate compounds I and II of the peroxidases.

Full text

PDF
4301

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dolphin D., Forman A., Borg D. C., Fajer J., Felton R. H. Compounds I of catalase and horse radish peroxidase: pi-cation radicals. Proc Natl Acad Sci U S A. 1971 Mar;68(3):614–618. doi: 10.1073/pnas.68.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Felton R. H., Owen G. S., Dolphin D., Fajer J. Iron(IV) porphyrins. J Am Chem Soc. 1971 Nov;93(23):6332–6334. doi: 10.1021/ja00752a091. [DOI] [PubMed] [Google Scholar]
  3. Felton R. H., Owen G. S., Dolphin D., Forman A., Borg D. C., Fajer J. Oxidation of ferric porphyrins. Ann N Y Acad Sci. 1973;206:504–515. doi: 10.1111/j.1749-6632.1973.tb43233.x. [DOI] [PubMed] [Google Scholar]
  4. Hayashi Y., Yamazaki I. The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem. 1979 Sep 25;254(18):9101–9106. [PubMed] [Google Scholar]
  5. Hoffman A. B., Collins D. M., Day V. W., Fleischer E. B., Srivastava T. S., Hoard J. L. The crystal structure and molecular stereochemistry of -oxo-bis( , , , -tetraphenylporphinatoiron (3)). J Am Chem Soc. 1972 May 17;94(10):3620–3626. doi: 10.1021/ja00765a060. [DOI] [PubMed] [Google Scholar]
  6. Kadish K. M., Morrison M. M., Constant L. A., Dickens L., Davis D. G. A study of solvent and substituent effects on the redox potentials and electron-transfer rate constants of substituted iron meso-tetraphenylporphyrins. J Am Chem Soc. 1976 Dec 22;98(26):8387–8390. doi: 10.1021/ja00442a013. [DOI] [PubMed] [Google Scholar]
  7. Morrison M., Schonbaum G. R. Peroxidase-catalyzed halogenation. Annu Rev Biochem. 1976;45:861–888. doi: 10.1146/annurev.bi.45.070176.004241. [DOI] [PubMed] [Google Scholar]
  8. Moss T. H., Ehrenberg A., Bearden A. J. Mössbauer spectroscopic evidence for the electronic configuration of iron in horseradish peroxidase and its peroxide derivatives. Biochemistry. 1969 Oct;8(10):4159–4162. doi: 10.1021/bi00838a037. [DOI] [PubMed] [Google Scholar]
  9. Roberts J. E., Hoffman B. M., Rutter R., Hager L. P. Electron-nuclear double resonance of horseradish peroxidase compound I. Detection of the porphyrin pi-cation radical. J Biol Chem. 1981 Mar 10;256(5):2118–2121. [PubMed] [Google Scholar]
  10. Schonbaum G. R., Lo S. Interaction of peroxidases with aromatic peracids and alkyl peroxides. Product analysis. J Biol Chem. 1972 May 25;247(10):3353–3360. [PubMed] [Google Scholar]
  11. Schulz C. E., Devaney P. W., Winkler H., Debrunner P. G., Doan N., Chiang R., Rutter R., Hager L. P. Horseradish peroxidase compound I: evidence for spin coupling between the heme iron and a 'free' radical. FEBS Lett. 1979 Jul 1;103(1):102–105. doi: 10.1016/0014-5793(79)81259-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES