Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(19):6394–6398. doi: 10.1073/pnas.82.19.6394

Cloning and characterization of two cDNAs coding for human von Willebrand factor.

J E Sadler, B B Shelton-Inloes, J M Sorace, J M Harlan, K Titani, E W Davie
PMCID: PMC390722  PMID: 2864688

Abstract

A cDNA library was prepared in lambda gt11 bacteriophage from poly(A)+ RNA isolated from primary cultures of endothelial cells from human umbilical vein. Approximately 2.5 million independent recombinants were screened and 2 of those were found to synthesize a fusion protein with beta-galactosidase that reacted with rabbit antibody against human von Willebrand factor. Comparison of the amino acid sequence translated from the cDNA insert of the two clones with the amino acid sequence determined by Edman degradation of the protein established that both phage isolates code for von Willebrand factor. The first clone (lambda HvWF1) contained an insert of 404 nucleotides that corresponded to amino acid residues 1-110 in the mature protein circulating in blood, in addition to a portion (24 amino acids) of a prepro leader sequence. The second cDNA clone (lambda HvWF3) contained an insert of 4.9 kilobases that coded for the carboxyl-terminal 1525 amino acids of von Willebrand factor, a stop codon of TGA, 134 nucleotides of 3' noncoding sequence, and a poly(A) tail of 150 nucleotides. The two clones together code for greater than 80% of the molecule circulating in blood. The same carboxyl-terminal lysine residue was identified in the mature protein as well as in the cDNA, indicating that all of the proteolytic processing that occurs during the biosynthesis and assembly of von Willebrand factor is associated with the amino-terminal portion of the precursor protein. The amino acid sequence of von Willebrand factor indicates the presence of two different internal gene duplications and one triplication. These repetitive amino acid sequences account for about one-half of the amino acids present in the mature protein. The tetrapeptide sequence of Arg-Gly-Asp-Ser, which mediates the cell attachment and platelet binding activity of fibronectin, was also identified in the carboxyl-terminal portion of von Willebrand factor.

Full text

PDF
6394

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canfield W. M., Kisiel W. Evidence of normal functional levels of activated protein C inhibitor in combined Factor V/VIII deficiency disease. J Clin Invest. 1982 Dec;70(6):1260–1272. doi: 10.1172/JCI110725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Dayhoff M. O., Barker W. C., Hunt L. T. Establishing homologies in protein sequences. Methods Enzymol. 1983;91:524–545. doi: 10.1016/s0076-6879(83)91049-2. [DOI] [PubMed] [Google Scholar]
  5. Debeire P., Montreuil J., Samor B., Mazurier C., Goudemand M., van Halbeek H., Vliegenthart J. F. Structure determination of the major asparagine-linked sugar chain of human factor VIII--von Willebrand factor. FEBS Lett. 1983 Jan 10;151(1):22–26. doi: 10.1016/0014-5793(83)80334-2. [DOI] [PubMed] [Google Scholar]
  6. Degen S. J., MacGillivray R. T., Davie E. W. Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochemistry. 1983 Apr 26;22(9):2087–2097. doi: 10.1021/bi00278a008. [DOI] [PubMed] [Google Scholar]
  7. Foster D., Davie E. W. Characterization of a cDNA coding for human protein C. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4766–4770. doi: 10.1073/pnas.81.15.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujimoto T., Ohara S., Hawiger J. Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets. J Clin Invest. 1982 Jun;69(6):1212–1222. doi: 10.1172/JCI110560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ginsberg M., Pierschbacher M. D., Ruoslahti E., Marguerie G., Plow E. Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J Biol Chem. 1985 Apr 10;260(7):3931–3936. [PubMed] [Google Scholar]
  10. Hessel B., Jörnvall H., Thorell L., Söderman S., Larsson U., Egberg N., Blombäck B., Holmgren A. Structure-function relationships of human factor VIII complex studied by thioredoxin dependent disulfide reduction. Thromb Res. 1984 Sep 15;35(6):637–651. doi: 10.1016/0049-3848(84)90267-6. [DOI] [PubMed] [Google Scholar]
  11. Jaffe E. A., Hoyer L. W., Nachman R. L. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest. 1973 Nov;52(11):2757–2764. doi: 10.1172/JCI107471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaffe E. A., Hoyer L. W., Nachman R. L. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci U S A. 1974 May;71(5):1906–1909. doi: 10.1073/pnas.71.5.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenkins C. S., Phillips D. R., Clemetson K. J., Meyer D., Larrieu M. J., Lüscher E. F. Platelet membrane glycoproteins implicated in ristocetin-induced aggregation. Studies of the proteins on platelets from patients with Bernard-Soulier syndrome and von Willebrand's disease. J Clin Invest. 1976 Jan;57(1):112–124. doi: 10.1172/JCI108251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kinoshita S., Harrison J., Lazerson J., Abildgaard C. F. A new variant of dominant type II von Willebrand's disease with aberrant multimeric pattern of factor VIII-related antigen (type IID). Blood. 1984 Jun;63(6):1369–1371. [PubMed] [Google Scholar]
  15. Lynch D. C., Williams R., Zimmerman T. S., Kirby E. P., Livingston D. M. Biosynthesis of the subunits of factor VIIIR by bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1983 May;80(9):2738–2742. doi: 10.1073/pnas.80.9.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  17. Morton L. F., Griffin B., Pepper D. S., Barnes M. J. The interaction between collagens and factor VIII/von Willebrand factor: investigation of the structural requirements for interaction. Thromb Res. 1983 Dec 15;32(6):545–556. doi: 10.1016/0049-3848(83)90056-7. [DOI] [PubMed] [Google Scholar]
  18. Nachman R. L., Jaffe E. A., Weksler B. B. Immunoinhibition of ristocetin-induced platelet aggregation. J Clin Invest. 1977 Jan;59(1):143–148. doi: 10.1172/JCI108612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nachman R., Levine R., Jaffe E. A. Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest. 1977 Oct;60(4):914–921. doi: 10.1172/JCI108846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  21. Okumura T., Jamieson G. A. Platelet glycocalicin: a single receptor for platelet aggregation induced by thrombin or ristocetin. Thromb Res. 1976 May;8(5):701–706. doi: 10.1016/0049-3848(76)90250-4. [DOI] [PubMed] [Google Scholar]
  22. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  23. Pierschbacher M. D., Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5985–5988. doi: 10.1073/pnas.81.19.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poncz M., Solowiejczyk D., Ballantine M., Schwartz E., Surrey S. "Nonrandom" DNA sequence analysis in bacteriophage M13 by the dideoxy chain-termination method. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4298–4302. doi: 10.1073/pnas.79.14.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ruggeri Z. M., Nilsson I. M., Lombardi R., Holmberg L., Zimmerman T. S. Aberrant multimeric structure of von Willebrand factor in a new variant of von Willebrand's disease (type IIC). J Clin Invest. 1982 Nov;70(5):1124–1127. doi: 10.1172/JCI110700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
  27. Samor B., Mazurier C., Goudemand M., Debeire P., Fournet B., Montreuil J. Preliminary results on the carbohydrate moiety of factor VIII/von Willebrand factor (FVIII/vWf). Thromb Res. 1982 Jan 1;25(1-2):81–89. doi: 10.1016/0049-3848(82)90216-x. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Santoro S. A. Adsorption of von Willebrand factor/factor VIII by the genetically distinct interstitial collagens. Thromb Res. 1981 Mar 15;21(6):689–691. doi: 10.1016/0049-3848(81)90272-3. [DOI] [PubMed] [Google Scholar]
  30. Santoro S. A., Cowan J. F. Adsorption of von Willebrand factor by fibrillar collagen--implications concerning the adhesion of platelets to collagen. Coll Relat Res. 1982 Jan;2(1):31–43. doi: 10.1016/s0174-173x(82)80039-3. [DOI] [PubMed] [Google Scholar]
  31. Schwarzbauer J. E., Tamkun J. W., Lemischka I. R., Hynes R. O. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell. 1983 Dec;35(2 Pt 1):421–431. doi: 10.1016/0092-8674(83)90175-7. [DOI] [PubMed] [Google Scholar]
  32. Sixma J. J., Sakariassen K. S., Stel H. V., Houdijk W. P., In der Maur D. W., Hamer R. J., de Groot P. G., van Mourik J. A. Functional domains on von Willebrand factor. Recognition of discrete tryptic fragments by monoclonal antibodies that inhibit interaction of von Willebrand factor with platelets and with collagen. J Clin Invest. 1984 Sep;74(3):736–744. doi: 10.1172/JCI111489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stenflo J., Fernlund P. Amino acid sequence of the heavy chain of bovine protein C. J Biol Chem. 1982 Oct 25;257(20):12180–12190. [PubMed] [Google Scholar]
  34. Striker G. E., Harlan J. M., Schwartz S. M. Human endothelial cells in vitro. Methods Cell Biol. 1980;21A:135–151. doi: 10.1016/s0091-679x(08)60763-3. [DOI] [PubMed] [Google Scholar]
  35. Thornton S. C., Mueller S. N., Levine E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science. 1983 Nov 11;222(4624):623–625. doi: 10.1126/science.6635659. [DOI] [PubMed] [Google Scholar]
  36. Tuddenham E. G., Lane R. S., Rotblat F., Johnson A. J., Snape T. J., Middleton S., Kernoff P. B. Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand's disease. Br J Haematol. 1982 Oct;52(2):259–267. doi: 10.1111/j.1365-2141.1982.tb03888.x. [DOI] [PubMed] [Google Scholar]
  37. Wagner D. D., Marder V. J. Biosynthesis of von Willebrand protein by human endothelial cells. Identification of a large precursor polypeptide chain. J Biol Chem. 1983 Feb 25;258(4):2065–2067. [PubMed] [Google Scholar]
  38. Wagner D. D., Marder V. J. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol. 1984 Dec;99(6):2123–2130. doi: 10.1083/jcb.99.6.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES