Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(19):6427–6430. doi: 10.1073/pnas.82.19.6427

RNase T is responsible for the end-turnover of tRNA in Escherichia coli.

M P Deutscher, C W Marlor, R Zaniewski
PMCID: PMC390729  PMID: 2413440

Abstract

A mutant strain deficient in RNase T was isolated and used to study the role of this enzyme in Escherichia coli. Strains lacking as much as 70% of RNase T activity, alone or in combination with the absence of other RNases, display normal growth properties. However, in cca strains, which lack tRNA nucleotidyltransferase, RNase T-deficient derivatives accumulate lower levels of defective tRNA and grow at increased rates compared to their RNase T+ parents. Slow-growing cca strains revert to a faster-growing form that contains less defective tRNA but which is still cca. All of these strains have decreased levels of RNase T. These data indicate that RNase T is responsible for nucleotide removal during the tRNA end-turnover process and that the amount of defective tRNA in cells is determined by the relative levels of RNase T and tRNA nucleotidyltransferase.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Deutscher M. P., Foulds J., McClain W. H. Transfer ribonucleic acid nucleotidyl-transferase plays an essential role in the normal growth of Escherichia coli and in the biosynthesis of some bacteriophage T4 transfer ribonucleic acids. J Biol Chem. 1974 Oct 25;249(20):6696–6699. [PubMed] [Google Scholar]
  3. Deutscher M. P., Hilderman R. H. Isolation and partial characterization of Escherichia coli mutants with low levels of transfer ribonucleic acid nucleotidyltransferase. J Bacteriol. 1974 May;118(2):621–627. doi: 10.1128/jb.118.2.621-627.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deutscher M. P., Lin J. J., Evans J. A. Transfer RNA metabolism in Escherichia coli cells deficient in tRNA nucleotidyltransferase. J Mol Biol. 1977 Dec 25;117(4):1081–1094. doi: 10.1016/s0022-2836(77)80014-4. [DOI] [PubMed] [Google Scholar]
  5. Deutscher M. P., Marlor C. W. Purification and characterization of Escherichia coli RNase T. J Biol Chem. 1985 Jun 10;260(11):7067–7071. [PubMed] [Google Scholar]
  6. Deutscher M. P., Marlor C. W., Zaniewski R. Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4290–4293. doi: 10.1073/pnas.81.14.4290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deutscher M. P., Setlow P., Foulds J. relA overcomes the slow growth of cca mutants. J Mol Biol. 1977 Dec 25;117(4):1095–1100. doi: 10.1016/s0022-2836(77)80015-6. [DOI] [PubMed] [Google Scholar]
  8. Foulds J., Hilderman R. H., Deutscher M. P. Mapping of the locus for Escherichia coli transfer ribonucleic acid nucleotidyltransferase. J Bacteriol. 1974 May;118(2):628–632. doi: 10.1128/jb.118.2.628-632.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Solari A., Gatica M. Exonucleases participating in the 3'end turnover of tRNA in Xenopus laevis. Biochem Int. 1984 Jun;8(6):831–841. [PubMed] [Google Scholar]
  10. Zaniewski R., Petkaitis E., Deutscher M. P. A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D, and RNase BN. J Biol Chem. 1984 Oct 10;259(19):11651–11653. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES