Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Dec;82(24):8448–8452. doi: 10.1073/pnas.82.24.8448

Amino-terminal processing of proteins: hemoglobin South Florida, a variant with retention of initiator methionine and N alpha-acetylation.

J P Boissel, T J Kasper, S C Shah, J I Malone, H F Bunn
PMCID: PMC390933  PMID: 3866233

Abstract

The hemoglobin variant South Florida has been shown by protein sequencing and fast-atom-bombardment mass spectroscopy to have a substitution of methionine for the NH2-terminal valine of the beta-globin chain. In addition, there was complete retention of the initiator methionine on the mutant polypeptide. Approximately 20% of the protein was acetylated at the NH2 terminus of the beta chain. A search of a comprehensive data bank of protein and gene sequences revealed 84 unrelated vertebrate proteins that have not undergone cleavage of leader sequences. A highly nonrandom distribution of residues at the NH2 termini of these proteins predicts removal of the initiator methionine as well as NH2-terminal acetylation. Proteins that undergo removal commonly have serine, alanine, glycine, or valine, as the NH2-terminal residues. The first three residues favor N alpha-acetylation. Proteins that retain the initiator methionine commonly have a charged residue or methionine at the second position. Information on Hb South Florida and other hemoglobins coupled with this survey of primary sequence provides insights into the NH2-terminal processing of proteins.

Full text

PDF
8448

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barwick R. C., Jones R. T., Head C. G., Shih M. F., Prchal J. T., Shih D. T. Hb Long Island: a hemoglobin variant with a methionyl extension at the NH2 terminus and a prolyl substitution for the normal histidyl residue 2 of the beta chain. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4602–4605. doi: 10.1073/pnas.82.14.4602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blouquit Y., Arous N., Lena D., Delanoe-Garin J., Lacombe C., Bardakdjian J., Vovan L., Orsini A., Rosa J., Galacteros F. Hb Marseille [alpha 2 beta 2 N methionyl-2 (NA2) His----Pro]: a new beta chain variant having an extended N-terminus. FEBS Lett. 1984 Dec 10;178(2):315–318. doi: 10.1016/0014-5793(84)80624-9. [DOI] [PubMed] [Google Scholar]
  3. Bunn H. F., Gabbay K. H., Gallop P. M. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science. 1978 Apr 7;200(4337):21–27. doi: 10.1126/science.635569. [DOI] [PubMed] [Google Scholar]
  4. Burstein Y., Schechter I. Primary structures of N-terminal extra peptide segments linked to the variable and constant regions of immunoglobulin light chain precursors: implications on the organization and controlled expression of immunoglobulin genes. Biochemistry. 1978 Jun 13;17(12):2392–2400. doi: 10.1021/bi00605a022. [DOI] [PubMed] [Google Scholar]
  5. Chang J. Y. Manual solid phase sequence analysis of polypeptides using 4-N-N,-dimethylaminoazobenzene 4'-isothiocyanate. Biochim Biophys Acta. 1979 May 23;578(1):188–195. doi: 10.1016/0005-2795(79)90126-0. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  7. Flückiger R., Harmon W., Meier W., Loo S., Gabbay K. H. Hemoglobin carbamylation in uremia. N Engl J Med. 1981 Apr 2;304(14):823–827. doi: 10.1056/NEJM198104023041406. [DOI] [PubMed] [Google Scholar]
  8. Galper J. B., Darnell J. E. The presence of N-formyl-methionyl-tRNA in HeLa cell mitochondria. Biochem Biophys Res Commun. 1969 Jan 27;34(2):205–214. doi: 10.1016/0006-291x(69)90633-0. [DOI] [PubMed] [Google Scholar]
  9. Garrick L. M., Sharma V. S., McDonald M. J., Ranney H. M. Rat haemoglobin heterogeneity. Two structurally distinct alpha chains and functional behaviour of selected components. Biochem J. 1975 Jul;149(1):245–258. doi: 10.1042/bj1490245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Granger M., Tesser G. I., De Jong W. W., Bloemendal H. Model studies of enzymatic NH2-terminal acetylation of porteins with des-Nalpha1-acetyl-alpha-melanotropin as a substrate. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3010–3014. doi: 10.1073/pnas.73.9.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harano T., Harano K., Shibata S., Ueda S., Mori H., Arimasa N. Hemoglobin Okayama [beta 2 (NA 2) His replaced by Gln]: a new 'silent' hemoglobin variant with substituted amino acid residue at the 2,3-diphosphoglycerate binding site. FEBS Lett. 1983 May 30;156(1):20–22. doi: 10.1016/0014-5793(83)80239-7. [DOI] [PubMed] [Google Scholar]
  12. Housman D., Jacobs-Lorena M., Rajbhandary U. L., Lodish H. F. Initiation of haemoglobin synthesis by methionyl-tRNA. Nature. 1970 Aug 29;227(5261):913–918. doi: 10.1038/227913a0. [DOI] [PubMed] [Google Scholar]
  13. Jackson R., Hunter T. Role of methionine in the initiation of haemoglobin synthesis. Nature. 1970 Aug 15;227(5259):672–676. doi: 10.1038/227672a0. [DOI] [PubMed] [Google Scholar]
  14. Kamps M. P., Buss J. E., Sefton B. M. Mutation of NH2-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4625–4628. doi: 10.1073/pnas.82.14.4625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kasten-Jolly J., Taketa F. Biosynthesis and amino terminal acetylation of cat hemoglobin B. Arch Biochem Biophys. 1982 Apr 1;214(2):829–839. doi: 10.1016/0003-9861(82)90090-x. [DOI] [PubMed] [Google Scholar]
  16. Labossiere A., Vella F., Hiebert J., Galbraith P. Hemoglobin Deer Lodge: 2 2 2 His leads to Arg . Clin Biochem. 1972 Mar;5(1):46–50. doi: 10.1016/s0009-9120(72)80007-9. [DOI] [PubMed] [Google Scholar]
  17. McDonald M. J., Shapiro R., Bleichman M., Solway J., Bunn H. F. Glycosylated minor components of human adult hemoglobin. Purification, identification, and partial structural analysis. J Biol Chem. 1978 Apr 10;253(7):2327–2332. [PubMed] [Google Scholar]
  18. Moo-Penn W. F., Bechtel K. C., Schmidt R. M., Johnson M. H., Jue D. L., Schmidt D. E., Jr, Dunlap W. M., Opella S. J., Bonaventura J., Bonaventura C. Hemoglobin Raleigh (beta1 valine replaced by acetylalanine). Structural and functional characterization. Biochemistry. 1977 Nov 1;16(22):4872–4879. doi: 10.1021/bi00641a019. [DOI] [PubMed] [Google Scholar]
  19. Palmiter R. D., Gagnon J., Vogt V. M., Ripley S., Eisenman R. N. The NH2-terminal sequence of the avian oncovirus gag precursor polyprotein (Pr76gag). Virology. 1978 Dec;91(2):423–433. doi: 10.1016/0042-6822(78)90388-4. [DOI] [PubMed] [Google Scholar]
  20. Palmiter R. D., Gagnon J., Walsh K. A. Ovalbumin: a secreted protein without a transient hydrophobic leader sequence. Proc Natl Acad Sci U S A. 1978 Jan;75(1):94–98. doi: 10.1073/pnas.75.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palmiter R. D. Prevention of NH2-terminal acetylation of proteins synthesized in cell-free systems. J Biol Chem. 1977 Dec 25;252(24):8781–8783. [PubMed] [Google Scholar]
  22. Pestana A., Pitot H. C. Acetylation of nascent polypeptide chains on rat liver polyribosomes in vivo and in vitro. Biochemistry. 1975 Apr 8;14(7):1404–1412. doi: 10.1021/bi00678a010. [DOI] [PubMed] [Google Scholar]
  23. Redman K., Rubenstein P. A. NH2-terminal processing of Dictyostelium discoideum actin in vitro. J Biol Chem. 1981 Dec 25;256(24):13226–13229. [PubMed] [Google Scholar]
  24. Rubenstein P. A., Martin D. J. NH2-terminal processing of actin in mouse L-cells in vivo. J Biol Chem. 1983 Mar 25;258(6):3961–3966. [PubMed] [Google Scholar]
  25. SATAKE K., SASAKAWA S., MARUYAMA T. N-Acetylvaline as the N-terminal group of chicken globin. J Biochem. 1963 Jun;53:516–517. doi: 10.1093/oxfordjournals.jbchem.a127735. [DOI] [PubMed] [Google Scholar]
  26. SCHROEDER W. A., CUA J. T., MATSUDA G., FENNINGER W. D. Hemoglobin F1, an acetyl-containing hemoglobin. Biochim Biophys Acta. 1962 Oct 8;63:532–534. doi: 10.1016/0006-3002(62)90125-7. [DOI] [PubMed] [Google Scholar]
  27. Schwartz W. E., Smith P. K., Royer G. P. N-(beta-Iodoethyl)trifluoroacetamide: a new reagent for the aminoethylation of thio groups in proteins. Anal Biochem. 1980 Jul 15;106(1):43–48. doi: 10.1016/0003-2697(80)90116-5. [DOI] [PubMed] [Google Scholar]
  28. Sherman F., McKnight G., Stewart J. W. AUG is the only initiation codon in eukaryotes. Biochim Biophys Acta. 1980 Sep 19;609(2):343–346. doi: 10.1016/0005-2787(80)90246-4. [DOI] [PubMed] [Google Scholar]
  29. Takeda M., Webster R. E. Protein chain initiation and deformylation in B. subtilis homogenates. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1487–1494. doi: 10.1073/pnas.60.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Traugh J. A., Sharp S. B. Protein modification enzymes associated with the protein-synthesizing complex from rabbit reticulocytes. Protein kinase, phosphoprotein phosphatase, and acetyltransferase. J Biol Chem. 1977 Jun 10;252(11):3738–3744. [PubMed] [Google Scholar]
  31. Tsunasawa S., Sakiyama F. Amino-terminal acetylation of proteins: an overview. Methods Enzymol. 1984;106:165–170. doi: 10.1016/0076-6879(84)06016-x. [DOI] [PubMed] [Google Scholar]
  32. Walsh K. A., Sasagawa T. High-performance liquid chromatography probes for posttranslationally modified amino acids. Methods Enzymol. 1984;106:22–29. doi: 10.1016/0076-6879(84)06005-5. [DOI] [PubMed] [Google Scholar]
  33. Wilson D. B., Dintzis H. M. Protein chain initiation in rabbit reticulocytes. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1282–1289. doi: 10.1073/pnas.66.4.1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wold F. In vivo chemical modification of proteins (post-translational modification). Annu Rev Biochem. 1981;50:783–814. doi: 10.1146/annurev.bi.50.070181.004031. [DOI] [PubMed] [Google Scholar]
  35. Woodford T. A., Dixon J. E. The Nalpha-acetylation of corticotropin and fragments of corticotropin by a rat pituitary Nalpha-acetyltransferase. J Biol Chem. 1979 Jun 25;254(12):4993–4999. [PubMed] [Google Scholar]
  36. Xchroeder W. A., Shelton J. B., Shelton J. R. Separation of hemoglobin peptides by high performance liquid chromatography (HPLC). Hemoglobin. 1980;4(3-4):551–559. doi: 10.3109/03630268008996236. [DOI] [PubMed] [Google Scholar]
  37. Yoshida A., Lin M. NH 2 -terminal formylmethionine- and NH 2 -terminal methionine-cleaving enzymes in rabbits. J Biol Chem. 1972 Feb 10;247(3):952–957. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES