Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Dec;82(24):8737–8741. doi: 10.1073/pnas.82.24.8737

Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide.

J C Connelly, R A Skidgel, W W Schulz, A R Johnson, E G Erdös
PMCID: PMC391512  PMID: 3909153

Abstract

Membrane metallo-endopeptidase (NEP; neutral endopeptidase, kidney-brush-border neutral proteinase, enkephalinase, EC 3.4.24.11) cleaves peptides at the amino side of hydrophobic amino acids. While the enzyme is known to be in organs such as kidney and brain, we found it in human neutrophils. These cells cleaved the NEP substrate glutaryl (Glut)-Ala-Ala-Phe-(4-methoxynaphthylamine) (Glut-Ala-Ala-Phe-MNA) at a rate of 9.5 nmol X hr-1 per 10(6) cells, and phosphoramidon (1 microM) inhibited the hydrolysis by 90%. Intact neutrophils from donors who smoked had NEP activities about twice that of nonsmokers. Subcellular fractionation and sucrose density gradient centrifugation of lysed neutrophils showed that most of the NEP activity was membrane bound. A washed membrane fraction from human neutrophils rapidly cleaved 0.5 mM Glut-Ala-Ala-Phe-MNA (96 nmol X min-1 X mg-1) and the hydrolysis was inhibited by phosphoramidon and by specific antiserum to human renal NEP. The washed membrane fraction also rapidly cleaved 0.1 mM bradykinin (34 nmol X min-1 mg-1) and 0.1 mM fMet-Leu-Phe (49 nmol X min-1 X mg-1). The membrane-bound enzyme cleaved the peptide substrates at the same site as the homogeneous human renal NEP, and phosphoramidon and thiorphan inhibited the hydrolysis. Kinetic studies with pure human renal NEP showed that the chemotactic peptide fMet-Leu-Phe was one of the best biologically active substrates (Km, 59 X 10(-6) M; kcat, 3654 min-1). Immunocytochemistry at the light microscopic level revealed a high concentration of NEP on the cell membrane of neutrophils. This was confirmed with electron microscopy using the immunogold technique on ultrathin cryosections. These studies indicate that NEP in neutrophils may have important functions in inflammation and chemotaxis.

Full text

PDF
8738

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almenoff J., Wilk S., Orlowski M. Membrane bound pituitary metalloendopeptidase: apparent identity to enkephalinase. Biochem Biophys Res Commun. 1981 Sep 16;102(1):206–214. doi: 10.1016/0006-291x(81)91508-4. [DOI] [PubMed] [Google Scholar]
  2. Aswanikumar S., Schiffmann E., Corcoran B. A., Wahl S. M. Role of a peptidase in phagocyte chemotaxis. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2439–2442. doi: 10.1073/pnas.73.7.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brower M. S., Levin R. I., Garry K. Human neutrophil elastase modulates platelet function by limited proteolysis of membrane glycoproteins. J Clin Invest. 1985 Feb;75(2):657–666. doi: 10.1172/JCI111744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  5. Castillo M. J., Nakajima K., Zimmerman M., Powers J. C. Sensitive substrates for human leukocyte and porcine pancreatic elastase: a study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal Biochem. 1979 Oct 15;99(1):53–64. doi: 10.1016/0003-2697(79)90043-5. [DOI] [PubMed] [Google Scholar]
  6. Danielsen E. M., Vyas J. P., Kenny A. J. A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties. Biochem J. 1980 Nov 1;191(2):645–648. doi: 10.1042/bj1910645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dewald B., Rindler-Ludwig R., Bretz U., Baggiolini M. Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes. J Exp Med. 1975 Apr 1;141(4):709–723. doi: 10.1084/jem.141.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erdos E. G., Yang H. Y. An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci. 1967 Mar 15;6(6):569–574. doi: 10.1016/0024-3205(67)90090-2. [DOI] [PubMed] [Google Scholar]
  9. Erdös E. G., Schulz W. W., Gafford J. T., Defendini R. Neutral metalloendopeptidase in human male genital tract. Comparison to angiotensin I-converting enzyme. Lab Invest. 1985 Apr;52(4):437–447. [PubMed] [Google Scholar]
  10. Gafford J. T., Skidgel R. A., Erdös E. G., Hersh L. B. Human kidney "enkephalinase", a neutral metalloendopeptidase that cleaves active peptides. Biochemistry. 1983 Jun 21;22(13):3265–3271. doi: 10.1021/bi00282a035. [DOI] [PubMed] [Google Scholar]
  11. Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
  12. Gros C., Giros B., Llorens C., Malfroy B., Pollard H., Pachot I., Schwartz J. C., Mazie J. C. Enkephalin metabolism and its inhibition. Biochem Soc Trans. 1985 Feb;13(1):47–50. doi: 10.1042/bst0130047. [DOI] [PubMed] [Google Scholar]
  13. Hersh L. B. Degradation of enkephalins: the search for an enkephalinase. Mol Cell Biochem. 1982 Aug 20;47(1):35–43. doi: 10.1007/BF00241564. [DOI] [PubMed] [Google Scholar]
  14. Janoff A. Purification of human granulocyte elastase by affinity chromatography. Lab Invest. 1973 Oct;29(4):458–464. [PubMed] [Google Scholar]
  15. Janoff A., White R., Carp H., Harel S., Dearing R., Lee D. Lung injury induced by leukocytic proteases. Am J Pathol. 1979 Oct;97(1):111–136. [PMC free article] [PubMed] [Google Scholar]
  16. Johnson A. R., Ashton J., Schulz W. W., Erdös E. G. Neutral metalloendopeptidase in human lung tissue and cultured cells. Am Rev Respir Dis. 1985 Sep;132(3):564–568. doi: 10.1164/arrd.1985.132.3.564. [DOI] [PubMed] [Google Scholar]
  17. Johnson A. R., Skidgel R. A., Gafford J. T., Erdös E. G. Enzymes in placental microvilli: angiotensin I converting enzyme, angiotensinase A, carboxypeptidase, and neutral endopeptidase ("enkephalinase"). Peptides. 1984 Jul-Aug;5(4):789–796. doi: 10.1016/0196-9781(84)90023-8. [DOI] [PubMed] [Google Scholar]
  18. Kerr M. A., Kenny A. J. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J. 1974 Mar;137(3):477–488. doi: 10.1042/bj1370477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marasco W. A., Phan S. H., Krutzsch H., Showell H. J., Feltner D. E., Nairn R., Becker E. L., Ward P. A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984 May 10;259(9):5430–5439. [PubMed] [Google Scholar]
  20. Mundy D. I., Strittmatter W. J. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells. Cell. 1985 Mar;40(3):645–656. doi: 10.1016/0092-8674(85)90213-2. [DOI] [PubMed] [Google Scholar]
  21. Reilly C. F., Tewksbury D. A., Schechter N. M., Travis J. Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases. J Biol Chem. 1982 Aug 10;257(15):8619–8622. [PubMed] [Google Scholar]
  22. Schwartz J. C., Malfroy B., De La Baume S. Biological inactivation of enkephalins and the role of enkephalin-dipeptidyl-carboxypeptidase ("enkephalinase") as neuropeptidase. Life Sci. 1981 Oct 26;29(17):1715–1740. doi: 10.1016/0024-3205(81)90182-x. [DOI] [PubMed] [Google Scholar]
  23. Skidgel R. A., Engelbrecht S., Johnson A. R., Erdös E. G. Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase. Peptides. 1984 Jul-Aug;5(4):769–776. doi: 10.1016/0196-9781(84)90020-2. [DOI] [PubMed] [Google Scholar]
  24. Skidgel R. A., Johnson A. R., Erdös E. G. Hydrolysis of opioid hexapeptides by carboxypeptidase N. Presence of carboxypeptidase in cell membranes. Biochem Pharmacol. 1984 Nov 1;33(21):3471–3478. doi: 10.1016/0006-2952(84)90122-9. [DOI] [PubMed] [Google Scholar]
  25. Skidgel R. A., Wickstrom E., Kumamoto K., Erdös E. G. Rapid radioassay for prolylcarboxypeptidase (angiotensinase C). Anal Biochem. 1981 Nov 15;118(1):113–119. doi: 10.1016/0003-2697(81)90165-2. [DOI] [PubMed] [Google Scholar]
  26. Spitznagel J. K., Dalldorf F. G., Leffell M. S., Folds J. D., Welsh I. R., Cooney M. H., Martin L. E. Character of azurophil and specific granules purified from human polymorphonuclear leukocytes. Lab Invest. 1974 Jun;30(6):774–785. [PubMed] [Google Scholar]
  27. Tokuyasu K. T. Present state of immunocryoultramicrotomy. J Histochem Cytochem. 1983 Jan;31(1A):164–167. [PubMed] [Google Scholar]
  28. West B. C., Rosenthal A. S., Gelb N. A., Kimball H. R. Separation and characterization of human neutrophil granules. Am J Pathol. 1974 Oct;77(1):41–66. [PMC free article] [PubMed] [Google Scholar]
  29. Zimmerman G. A., Renzetti A. D., Hill H. R. Functional and metabolic activity of granulocytes from patients with adult respiratory distress syndrome. Evidence for activated neutrophils in the pulmonary circulation. Am Rev Respir Dis. 1983 Mar;127(3):290–300. doi: 10.1164/arrd.1983.127.3.290. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES