Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Aug;81(15):4814–4818. doi: 10.1073/pnas.81.15.4814

Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties.

I Stuhlfauth, J Reininghaus, H Jockusch, C W Heizmann
PMCID: PMC391581  PMID: 6589628

Abstract

To elucidate the biochemical basis of hereditary muscle diseases in an experimental mammal, we performed polypeptide analyses on skeletal muscles of neuromuscular mutants of the mouse. In one of these, "arrested development of righting response" (adr), the concentration of the soluble Ca2+-binding protein parvalbumin was drastically reduced in comparison to wild type. This reduction was not an unspecific consequence of muscle disease, as it was not observed in two other neuromuscular mouse mutants, "wobbler" (wr) and "motor endplate disease" (med or medjo). Isometric twitches of adr muscle had only slightly prolonged contraction and half-relaxation times, yet long-lasting after-contractions were observed upon repeated (20-100 Hz) direct stimulation. Thus, parvalbumin may be mainly involved in the relaxation after tetanic contraction of fast-twitch fibers.

Full text

PDF
4815

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berchtold M. W., Heizmann C. W., Wilson K. J. Ca2+-binding proteins: a comparative study of their behavior during high-performance liquid chromatography using gradient elution on reverse-phase supports. Anal Biochem. 1983 Feb 15;129(1):120–131. doi: 10.1016/0003-2697(83)90060-x. [DOI] [PubMed] [Google Scholar]
  2. Berchtold M. W., Wilson K. J., Heizmann C. W. Isolation of neuronal parvalbumin by high-performance liquid chromatography. Characterization and comparison with muscle parvalbumin. Biochemistry. 1982 Dec 7;21(25):6552–6557. doi: 10.1021/bi00268a035. [DOI] [PubMed] [Google Scholar]
  3. Celio M. R., Heizmann C. W. Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature. 1982 Jun 10;297(5866):504–506. doi: 10.1038/297504a0. [DOI] [PubMed] [Google Scholar]
  4. Duchen L. W., Strich S. J. An hereditary motor neurone disease with progressive denervation of muscle in the mouse: the mutant 'wobbler'. J Neurol Neurosurg Psychiatry. 1968 Dec;31(6):535–542. doi: 10.1136/jnnp.31.6.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  6. Gillis J. M., Thomason D., Lefèvre J., Kretsinger R. H. Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil. 1982 Dec;3(4):377–398. doi: 10.1007/BF00712090. [DOI] [PubMed] [Google Scholar]
  7. Heizmann C. W., Berchtold M. W., Rowlerson A. M. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7243–7247. doi: 10.1073/pnas.79.23.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heizmann C. W., Strehler E. E. Chicken parvalbumin. Comparison with parvalbumin-like protein and three other components (Mr = 8,000 to 13,000). J Biol Chem. 1979 May 25;254(10):4296–4303. [PubMed] [Google Scholar]
  9. Jockusch H. Neuro-muskuläre Wechselwirkungen Ansätze zur biochemisch-genetischen Analyse. Naturwissenschaften. 1977 May;64(5):260–265. doi: 10.1007/BF00438298. [DOI] [PubMed] [Google Scholar]
  10. Kelly P. T., Luttges M. W. Electrophoretic separation of nervous system proteins on exponential gradient polyacrylamide gels. J Neurochem. 1975 May;24(5):1077–1079. doi: 10.1111/j.1471-4159.1975.tb03680.x. [DOI] [PubMed] [Google Scholar]
  11. Klug G., Reichmann H., Pette D. Rapid reduction in parvalbumin concentration during chronic stimulation of rabbit fast twitch muscle. FEBS Lett. 1983 Feb 21;152(2):180–182. doi: 10.1016/0014-5793(83)80374-3. [DOI] [PubMed] [Google Scholar]
  12. Kretsinger R. H. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8(2):119–174. doi: 10.3109/10409238009105467. [DOI] [PubMed] [Google Scholar]
  13. Luff A. R. Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm and soleus muscles of the mouse. J Physiol. 1981;313:161–171. doi: 10.1113/jphysiol.1981.sp013656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakane P. K. Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem. 1968 Sep;16(9):557–560. doi: 10.1177/16.9.557. [DOI] [PubMed] [Google Scholar]
  15. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  16. Parry D. J., Parslow H. G. Fiber type susceptibility in the dystrophic mouse. Exp Neurol. 1981 Sep;73(3):674–685. doi: 10.1016/0014-4886(81)90204-1. [DOI] [PubMed] [Google Scholar]
  17. Pechère J. F., Derancourt J., Haiech J. The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal-muscle. FEBS Lett. 1977 Mar 15;75(1):111–114. doi: 10.1016/0014-5793(77)80064-1. [DOI] [PubMed] [Google Scholar]
  18. Reichmann H., Pette D. A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles. Histochemistry. 1982;74(1):27–41. doi: 10.1007/BF00495049. [DOI] [PubMed] [Google Scholar]
  19. Rieger F., Pinçon-Raymond M., Lombet A., Ponzio G., Lazdunski M., Sidman R. L. Paranodal dysmyelination and increase in tetrodotoxin binding sites in the sciatic nerve of the motor end-plate disease (med/med) mouse during postnatal development. Dev Biol. 1984 Feb;101(2):401–409. doi: 10.1016/0012-1606(84)90154-4. [DOI] [PubMed] [Google Scholar]
  20. Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sidman R. L., Cowen J. S., Eicher E. M. Inherited muscle and nerve diseases in mice: a tabulation with commentary. Ann N Y Acad Sci. 1979;317:497–505. doi: 10.1111/j.1749-6632.1979.tb56567.x. [DOI] [PubMed] [Google Scholar]
  22. Sonoda S., Schlamowitz M. Studies of 125I trace labeling of immunoglobulin G by chloramine-T. Immunochemistry. 1970 Nov;7(11):885–898. doi: 10.1016/0019-2791(70)90051-0. [DOI] [PubMed] [Google Scholar]
  23. Strehler E. E., Eppenberger H. M., Heizmann C. W. Isolation and characterization of parvalbumin from chicken leg-muscle. FEBS Lett. 1977;78(1):127–133. doi: 10.1016/0014-5793(77)80289-5. [DOI] [PubMed] [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Westwood S. A., Perry S. V. The effect of adrenaline on the phosphorylation of the P light chain of myosin and troponin I in the perfused rabbit heart. Biochem J. 1981 Jul 1;197(1):185–193. doi: 10.1042/bj1970185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Whalen R. G., Butler-Browne G. S., Gros F. Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells. J Mol Biol. 1978 Dec 15;126(3):415–431. doi: 10.1016/0022-2836(78)90049-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES