Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Sep;81(18):5633–5637. doi: 10.1073/pnas.81.18.5633

Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage.

R Cathcart, E Schwiers, R L Saul, B N Ames
PMCID: PMC391764  PMID: 6592579

Abstract

Thymine glycol is a DNA damage product of ionizing radiation and other oxidative mutagens. In an attempt to find a noninvasive assay for oxidative DNA damage in individuals, we have developed an HPLC assay for free thymine glycol and thymidine glycol in urine. Our results indicate that humans excrete about 32 nmol of the two glycols per day. Rats, which have a higher specific metabolic rate and a shorter life span, excrete about 15 times more thymine glycol plus thymidine glycol per kg of body weight than do humans. We present evidence that thymine glycol and thymidine glycol are likely to be derived from repair of oxidized DNA, rather than from alternative sources such as the diet or bacterial flora. This noninvasive assay of DNA oxidation products may allow the direct testing of current theories which relate oxidative metabolism to the processes of aging and cancer in man.

Full text

PDF
5633

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  3. Beer M., Stern S., Carmalt D., Mohlhenrich K. H. Determination of base sequence in nucleic acids with the electron microscope. V. The thymine-specific reactions of osmium tetroxide with deoxyribonucleic acid and its components. Biochemistry. 1966 Jul;5(7):2283–2288. doi: 10.1021/bi00871a017. [DOI] [PubMed] [Google Scholar]
  4. Bogenhagen D., Clayton D. A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem. 1974 Dec 25;249(24):7991–7995. [PubMed] [Google Scholar]
  5. Cadet J., Teoule R. Peroxydes formés par action du rayonnement gamma sur la thymine en solution aqueuse aérée. Biochim Biophys Acta. 1971 Apr 29;238(1):8–26. [PubMed] [Google Scholar]
  6. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  7. Demple B., Linn S. DNA N-glycosylases and UV repair. Nature. 1980 Sep 18;287(5779):203–208. doi: 10.1038/287203a0. [DOI] [PubMed] [Google Scholar]
  8. Emery A. E., Burt D. Amino acid, creatine and creatinine studies in myotonic dystrophy. Clin Chim Acta. 1972 Jul;39(2):361–365. doi: 10.1016/0009-8981(72)90054-x. [DOI] [PubMed] [Google Scholar]
  9. Hariharan P. V., Cerutti P. A. Excision of damaged thymine residues from gamma-irradiated poly(dA-dT) by crude extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3532–3536. doi: 10.1073/pnas.71.9.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helland D., Nes I. F., Kleppe K. Mammalian DNA-repair endonuclease acts only on supercoiled DNA. FEBS Lett. 1982 Jun 1;142(1):121–124. doi: 10.1016/0014-5793(82)80233-0. [DOI] [PubMed] [Google Scholar]
  12. Hollstein M. C., Brooks P., Linn S., Ames B. N. Hydroxymethyluracil DNA glycosylase in mammalian cells. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4003–4007. doi: 10.1073/pnas.81.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindahl T. DNA repair enzymes. Annu Rev Biochem. 1982;51:61–87. doi: 10.1146/annurev.bi.51.070182.000425. [DOI] [PubMed] [Google Scholar]
  14. Mattern M. R., Hariharan P. V., Cerutti P. A. Selective excision of gamma ray damaged thymine from the DNA of cultured mammalian cells. Biochim Biophys Acta. 1975 Jun 2;395(1):48–55. doi: 10.1016/0005-2787(75)90232-4. [DOI] [PubMed] [Google Scholar]
  15. Nes I. F. Purification and properties of a mouse-cell DNA-repair endonuclease, which recognizes lesions in DNA induced by ultraviolet light, depurination, gamma-rays, and OsO4 treatment. Eur J Biochem. 1980 Nov;112(1):161–168. doi: 10.1111/j.1432-1033.1980.tb04997.x. [DOI] [PubMed] [Google Scholar]
  16. ROBERTS D., FRIEDKIN M. The fluorometric determination of thymine in deoxyribonucleic acid and derivatives. J Biol Chem. 1958 Aug;233(2):483–487. [PubMed] [Google Scholar]
  17. Shaikh B., Huang S. S., Pontzer N. J. Urinary excretion of methylated purines and 1-methyl-nicotinamide following administration of methylating carcinogens. Chem Biol Interact. 1980 May;30(2):253–256. doi: 10.1016/0009-2797(80)90132-5. [DOI] [PubMed] [Google Scholar]
  18. Söderhäll S. S., Larsson A., Skoog K. L. Deoxyribonucleotide pools during liver regeneration. Eur J Biochem. 1973 Feb 15;33(1):36–39. doi: 10.1111/j.1432-1033.1973.tb02651.x. [DOI] [PubMed] [Google Scholar]
  19. THOMSON R. Y., HEAGY F. C., HUTCHISON W. C., DAVIDSON J. N. The deoxyribonucleic acid content of the rat cell nucleus and its use in expressing the results of tissue analysis, with particular reference to the composition of liver tissue. Biochem J. 1953 Feb;53(3):460–474. doi: 10.1042/bj0530460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Teoule R., Bert C., Bonicel A. Thymine fragment damage retained in the DNA polynucleotide chain after gamma irradiation in aerated solutions. II. Radiat Res. 1977 Nov;72(2):190–200. [PubMed] [Google Scholar]
  21. Totter J. R. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1763–1767. doi: 10.1073/pnas.77.4.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WOODHOUSE D. L. The purine and pyrimidine composition of some deoxyribonucleic acids from tumours. Biochem J. 1954 Feb;56(2):349–352. doi: 10.1042/bj0560349. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES