Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Sep;81(18):5772–5776. doi: 10.1073/pnas.81.18.5772

Phase changes at the end of a microtubule with a GTP cap.

T L Hill, Y Chen
PMCID: PMC391793  PMID: 6592585

Abstract

Examination of Monte Carlo kinetic simulations, based on a realistic set of microscopic rate constants that apply to the end of a microtubule with a GTP cap, suggests that the end of a microtubule alternates between two quasimacroscopic phases. In one phase, the microtubule end has a GTP cap that fluctuates in size; in the other phase, the GTP cap has been lost. These repeated phase changes take place at any given tubulin concentration in a wide range of concentrations. While in the first phase, the microtubule grows slowly; while in the second phase, it shortens rapidly and may disappear completely. These results are closely related to the recent experimental work of Mitchison and Kirschner [Mitchison, T. & Kirschner, M.W. (1984) Nature (London), in press].

Full text

PDF
5773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlier M. F. Guanosine-5'-triphosphate hydrolysis and tubulin polymerization. Review article. Mol Cell Biochem. 1982 Sep 3;47(2):97–113. doi: 10.1007/BF00234410. [DOI] [PubMed] [Google Scholar]
  2. Carlier M. F., Hill T. L., Chen Y. Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. Proc Natl Acad Sci U S A. 1984 Feb;81(3):771–775. doi: 10.1073/pnas.81.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlier M. F., Pantaloni D. Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry. 1981 Mar 31;20(7):1918–1924. doi: 10.1021/bi00510a030. [DOI] [PubMed] [Google Scholar]
  4. Carlier M. F., Pantaloni D., Korn E. D. Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state. J Biol Chem. 1984 Aug 25;259(16):9983–9986. [PubMed] [Google Scholar]
  5. Chen Y., Hill T. L. Use of Monte Carlo calculations in the study of microtubule subunit kinetics. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7520–7523. doi: 10.1073/pnas.80.24.7520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hill T. L., Carlier M. F. Steady-state theory of the interference of GTP hydrolysis in the mechanism of microtubule assembly. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7234–7238. doi: 10.1073/pnas.80.23.7234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES