Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(20):6521–6525. doi: 10.1073/pnas.81.20.6521

Isolation, purification, and reconstitution of the Na+ gradient-dependent Ca2+ transporter (Na+-Ca2+ exchanger) from brain synaptic plasma membranes.

A Barzilai, R Spanier, H Rahamimoff
PMCID: PMC391956  PMID: 6593714

Abstract

A [Na+]-gradient-dependent Ca2+ transporter from brain synaptic plasma membranes has been isolated, purified, and reconstituted into brain phospholipid vesicles. The purification was achieved by sucrose-gradient centrifugation after solubilization of the synaptic membranes in cholate in the presence of a 30-fold excess (by weight) of added brain phospholipids and [Na+]-gradient-dependent Ca2+ loading of the reconstituted vesicles. A 128-fold increase in specific activity of [Na+]-gradient-dependent Ca2+ uptake per mg of protein has been obtained. The purified and reconstituted vesicles took up Ca2+ only in response to an outward-oriented [Na+] gradient. The Ca2+ uptake could be inhibited by dissipation of the [Na+] gradient with nigericin. Successful purification was based on the initial [Na+]-gradient dependency of the Ca2+-transport process, the magnitude of the [Na+]-gradient-dependent uptake, and the presence of purified brain phospholipids. Analysis of the sucrose-gradient-purified reconstituted vesicles on NaDodSO4/polyacrylamide gels showed that the activity coincided with enriched appearance of a 70,000-Da protein.

Full text

PDF
6522

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaustein M. P., Ector A. C. Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes) in vitro. Biochim Biophys Acta. 1976 Jan 21;419(2):295–308. doi: 10.1016/0005-2736(76)90355-2. [DOI] [PubMed] [Google Scholar]
  3. Chan S. Y., Hess E. J., Rahamimoff H., Goldin S. M. Purification and immunological characterization of a calcium pump from bovine brain synaptosomal vesicles. J Neurosci. 1984 Jun;4(6):1468–1478. doi: 10.1523/JNEUROSCI.04-06-01468.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gasko O. D., Knowles A. F., Shertzer H. G., Suolinna E. M., Racker E. The use of ion-exchange resins for studying ion transport in biological systems. Anal Biochem. 1976 May 7;72:57–65. doi: 10.1016/0003-2697(76)90506-6. [DOI] [PubMed] [Google Scholar]
  5. Goldin S. M., Rhoden V. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins. J Biol Chem. 1978 Apr 25;253(8):2575–2583. [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. LUTTGAU H. C., NIEDERGERKE R. The antagonism between Ca and Na ions on the frog's heart. J Physiol. 1958 Oct 31;143(3):486–505. doi: 10.1113/jphysiol.1958.sp006073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Miyamoto H., Racker E. Solubilization and partial purification of the Ca2+/Na+ antiporter from the plasma membrane of bovine heart. J Biol Chem. 1980 Apr 10;255(7):2656–2658. [PubMed] [Google Scholar]
  10. Mullins L. J. The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol. 1979 Mar;236(3):C103–C110. doi: 10.1152/ajpcell.1979.236.3.C103. [DOI] [PubMed] [Google Scholar]
  11. Papazian D., Rahamimoff H., Goldin S. M. Reconstitution and purification by "transport specificity fractionation" of an ATP-dependent calcium transport component from synaptosome-derived vesicles. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3708–3712. doi: 10.1073/pnas.76.8.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rahamimoff H., Spanier R. Sodium-dependent calcium uptake in membrane vesicles derived from rat brain synaptosomes. FEBS Lett. 1979 Aug 1;104(1):111–114. doi: 10.1016/0014-5793(79)81094-7. [DOI] [PubMed] [Google Scholar]
  13. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  15. Schellenberg G. D., Swanson P. D. Solubilization and reconstitution of membranes containing the Na+ -Ca2+ exchange carrier from rat brain. Biochim Biophys Acta. 1982 Aug 25;690(1):133–144. doi: 10.1016/0005-2736(82)90247-4. [DOI] [PubMed] [Google Scholar]
  16. Wakabayashi S., Goshima K. Partial purification of Na+-Ca2+ antiporter from plasma membrane of chick heart. Biochim Biophys Acta. 1982 Dec 8;693(1):125–133. doi: 10.1016/0005-2736(82)90478-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES