Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Dec;81(24):7999–8003. doi: 10.1073/pnas.81.24.7999

A noncholinergic site-directed monoclonal antibody can impair agonist-induced ion flux in Torpedo californica acetylcholine receptor.

D Donnelly, M Mihovilovic, J M Gonzalez-Ros, J A Ferragut, D Richman, M Martinez-Carrion
PMCID: PMC392281  PMID: 6096872

Abstract

We have employed several monoclonal antibodies (mAbs) directed against several regions of the acetylcholine receptor (AcChoR) to assist in the determination of the antigenic structure of this multisubunit glycoprotein and to better understand molecular events involved in the impairment of neuromuscular transmission in the autoimmune disease myasthenia gravis. Among three mAbs shown to block agonist-induced ion fluxes, mAb 371A is a putative probe of an ion channel domain(s) of the AcChoR. It appears to bind to an antigenic determinant whose structure is maintained upon treatment with sodium dodecyl sulfate, the stoichiometry of binding being of one mAb per alpha-bungarotoxin binding site. Binding of mAb 371A to the AcChoR does not affect binding of cholinergic agonists or antagonists (carbamoylcholine and d-tubocurarine) or neurotoxins (alpha-bungarotoxin) or the ability of membrane-bound AcChoR to undergo reversible sensitization-desensitization affinity transitions. However, this mAb inhibits agonist-induced thallium (T1+) influx into AcChoR-rich membrane vesicles, as measured on a millisecond time scale by means of a rapid kinetics "stopped-flow/fluorescence quenching" technique. The stoichiometry of inhibition by bound mAb 371A coincides with that for maximal binding.

Full text

PDF
8003

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballivet M., Patrick J., Lee J., Heinemann S. Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4466–4470. doi: 10.1073/pnas.79.14.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark D. G., Macmurchie D. D., Elliott E., Wolcott R. G., Landel A. M., Raftery M. A. Elapid neurotoxins. Purification, characterization, and immunochemical studies of -bungarotoxin. Biochemistry. 1972 Apr 25;11(9):1663–1668. doi: 10.1021/bi00759a020. [DOI] [PubMed] [Google Scholar]
  3. Dunn S. M., Raftery M. A. Multiple binding sites for agonists on Torpedo californica acetylcholine receptor. Biochemistry. 1982 Nov 23;21(24):6264–6272. doi: 10.1021/bi00267a035. [DOI] [PubMed] [Google Scholar]
  4. Dwyer D. S., Kearney J. F., Bradley R. J., Kemp G. E., Oh S. J. Interaction of human antibody and murine monoclonal antibody with muscle acetylcholine receptor. Ann N Y Acad Sci. 1981;377:143–157. doi: 10.1111/j.1749-6632.1981.tb33729.x. [DOI] [PubMed] [Google Scholar]
  5. Farach M. C., Mihovilovic M., Paraschos A., Martinez-Carrion M. Effect of anti-acetylcholine receptor Fab fragments from goats on functional membrane-bound receptor. Arch Biochem Biophys. 1982 Mar;214(1):140–154. doi: 10.1016/0003-9861(82)90016-9. [DOI] [PubMed] [Google Scholar]
  6. Gomez C. M., Richman D. P., Berman P. W., Burres S. A., Arnason B. G., Fitch F. W. Monoclonal antibodies against purified nicotinic acetylcholine receptor. Biochem Biophys Res Commun. 1979 May 28;88(2):575–582. doi: 10.1016/0006-291x(79)92087-4. [DOI] [PubMed] [Google Scholar]
  7. Gonzalez-Ros J. M., Ferragut J. A., Martinez-Carrion M. Binding of anti-acetylcholine receptor antibodies inhibits the acetylcholine receptor mediated cation flux. Biochem Biophys Res Commun. 1984 Apr 30;120(2):368–375. doi: 10.1016/0006-291x(84)91263-4. [DOI] [PubMed] [Google Scholar]
  8. Gullick W. J., Lindstrom J. M. Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica. Biochemistry. 1983 Jul 5;22(14):3312–3320. doi: 10.1021/bi00283a003. [DOI] [PubMed] [Google Scholar]
  9. Gullick W. J., Tzartos S., Lindstrom J. Monoclonal antibodies as probes of acetylcholine receptor structure. 1. Peptide mapping. Biochemistry. 1981 Apr 14;20(8):2173–2180. doi: 10.1021/bi00511a016. [DOI] [PubMed] [Google Scholar]
  10. Heidmann T., Oswald R. E., Changeux J. P. Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments from torpedo marmorata. Biochemistry. 1983 Jun 21;22(13):3112–3127. doi: 10.1021/bi00282a014. [DOI] [PubMed] [Google Scholar]
  11. James R. W., Kato A. C., Rey M. J., Fulpius B. W. Monoclonal antibodies directed against the neurotransmitter binding site of nicotinic acetylcholine receptor. FEBS Lett. 1980 Oct 20;120(1):145–148. doi: 10.1016/0014-5793(80)81066-0. [DOI] [PubMed] [Google Scholar]
  12. Karpen J. W., Aoshima H., Abood L. G., Hess G. P. Cocaine and phencyclidine inhibition of the acetylcholine receptor: analysis of the mechanisms of action based on measurements of ion flux in the millisecond-to-minute time region. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2509–2513. doi: 10.1073/pnas.79.8.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kistler J., Stroud R. M., Klymkowsky M. W., Lalancette R. A., Fairclough R. H. Structure and function of an acetylcholine receptor. Biophys J. 1982 Jan;37(1):371–383. doi: 10.1016/S0006-3495(82)84685-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lindstrom J., Tzartos S., Gullick W. Structure and function of the acetylcholine receptor molecule studied using monoclonal antibodies. Ann N Y Acad Sci. 1981;377:1–19. doi: 10.1111/j.1749-6632.1981.tb33721.x. [DOI] [PubMed] [Google Scholar]
  17. Martinez-Carrion M., Gonzalez-Ros J. M., Mattingly J. R., Ferragut J. A., Farach M. C., Donnelly D. Fluorescence probes for the study of acetylcholine receptor function. Biophys J. 1984 Jan;45(1):141–143. doi: 10.1016/S0006-3495(84)84141-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neubig R. R., Krodel E. K., Boyd N. D., Cohen J. B. Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc Natl Acad Sci U S A. 1979 Feb;76(2):690–694. doi: 10.1073/pnas.76.2.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982 Oct 28;299(5886):793–797. doi: 10.1038/299793a0. [DOI] [PubMed] [Google Scholar]
  20. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hirose T., Asai M., Takashima H., Inayama S., Miyata T. Primary structures of beta- and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature. 1983 Jan 20;301(5897):251–255. doi: 10.1038/301251a0. [DOI] [PubMed] [Google Scholar]
  21. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hirose T., Asai M., Takashima H., Inayama S., Miyata T. Primary structures of beta- and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature. 1983 Jan 20;301(5897):251–255. doi: 10.1038/301251a0. [DOI] [PubMed] [Google Scholar]
  22. Oswald R. E., Heidmann T., Changeux J. P. Multiple affinity states for noncompetitive blockers revealed by [3H]phencyclidine binding to acetylcholine receptor rich membrane fragments from Torpedo marmorata. Biochemistry. 1983 Jun 21;22(13):3128–3136. doi: 10.1021/bi00282a015. [DOI] [PubMed] [Google Scholar]
  23. Schmidt J., Raftery M. A. A simple assay for the study of solubilized acetylcholine receptors. Anal Biochem. 1973 Apr;52(2):349–354. doi: 10.1016/0003-2697(73)90036-5. [DOI] [PubMed] [Google Scholar]
  24. Sumikawa K., Houghton M., Smith J. C., Bell L., Richards B. M., Barnard E. A. The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acids Res. 1982 Oct 11;10(19):5809–5822. doi: 10.1093/nar/10.19.5809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tzartos S. J., Lindstrom J. M. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci U S A. 1980 Feb;77(2):755–759. doi: 10.1073/pnas.77.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Watters D., Maelicke A. Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry. 1983 Apr 12;22(8):1811–1819. doi: 10.1021/bi00277a011. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES