Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 May;75(5):2493–2496. doi: 10.1073/pnas.75.5.2493

Modification of conditioned behavior of rats by neurohypophyseal hormones and analogues

Roderich Walter *, Jan M Van Ree , David De Wied
PMCID: PMC392580  PMID: 276885

Abstract

Vasopressin and other neurohypophyseal peptides affect various processes related to memory and/or learning. A single subcutaneous injection of vasopressin increases resistance to extinction of a pole-jumping avoidance response in rat. This test system has been applied in an attempt to relate structural aspects of neurohypophyseal peptides, analogues, and derivatives with truncated sequences to their effects on conditioned behavior. Thus far it can be concluded that there are more stringent requirements on certain residues in the 20-member covalent ring than in positions 8 and 9 of the linear peptide portion for neurohypophyseal hormones to be active. Critical are the contributions of residues in positions 2, 3, and 5; these results are reminiscent of those from conformation-activity correlations of the endocrine effects of neurohypophyseal hormones, in which the side chain of the residue in position 3 is critical for receptor binding and the side chains of residues in positions 2 and 5 are key for the activation of the receptor. Chemical modifications in position 4 yield analogues that are active and inactive in increasing the resistance to extinction of the avoidance response, depending on the particular structural substitution, similar to results from structure-activity studies of the endocrine activities of neurohypophyseal hormones. Because behavioral activities of vasopressin are more tolerant than endocrine activities to modifications of the hormone in positions 8 and 9, analogues with the most striking dissociation of potencies in learned behavior and endocrine responses are expected to be those with sequence alterations in the linear peptide portion. Peptides with linear part sequences of neurohypophyseal hormones showed little or no activity. The results obtained in this structure-activity study are compared with those of an earlier study in which the ability of various neurohypophyseal peptides to attenuate puromycin-induced amnesia in mice was evaluated.

Keywords: active avoidance response, memory, learning, structure-activity relationship, peptides

Full text

PDF
2493

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cort J. H., Fric I., Carlsson L., Gillessen D., Bystrický S., Skopková J., Gut V., Studer R. O., Mulder J. L., Bláha K. Biological and chiroptical sequelae of graded alkyl substitutions in the vasopressin ring. Mol Pharmacol. 1976 Mar;12(2):313–321. [PubMed] [Google Scholar]
  2. De Wied D. Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature. 1971 Jul 2;232(5305):58–60. doi: 10.1038/232058a0. [DOI] [PubMed] [Google Scholar]
  3. Dyckes D. F., Ferger M. F., Du Vigneaud V., Chan W. Y. Synthesis and some of the pharmacological properties of (4-leucine)-8-lysine-vasopressin and (1-deamino,4-leucine)-8-lysine-vasopressin. J Med Chem. 1973 Jul;16(7):843–847. doi: 10.1021/jm00265a022. [DOI] [PubMed] [Google Scholar]
  4. Flexner J. B., Flexner L. B., Hoffman P. L., Walter R. Dose-response relationships in attenuation of puromycin-induced amnesia by neurohypophyseal peptides. Brain Res. 1977 Sep 23;134(1):139–144. doi: 10.1016/0006-8993(77)90931-3. [DOI] [PubMed] [Google Scholar]
  5. Gillessen D., Du Vigneaud V. Synthesis and pharmacological properties of 4-decarboxamido-8-arginine-vasopressin and its 1-deamino analog. J Med Chem. 1970 May;13(3):346–349. doi: 10.1021/jm00297a002. [DOI] [PubMed] [Google Scholar]
  6. Gillessen D., Du Vigneaud V. The synthesis and pharmacological properties of 4-decarboxamido-8-lysine-vasopressin, 5-decarboxamido-8-lysine-vasopressin, and their 1-deamino analogues. J Biol Chem. 1967 Oct 25;242(20):4806–4812. [PubMed] [Google Scholar]
  7. Rudinger J., Pliska V., Krejcí I. Oxytocin analogs in the analysis of some phases of hormone action. Recent Prog Horm Res. 1972;28:131–172. [PubMed] [Google Scholar]
  8. Sawyer W. H., Acosta M., Balaspiri L., Judd J., Manning M. Structural changes in the arginine vasopressin molecule that enhance antidiuretic activity and specificity. Endocrinology. 1974 Apr;94(4):1106–1115. doi: 10.1210/endo-94-4-1106. [DOI] [PubMed] [Google Scholar]
  9. Smith C. W., Ferger M. F., Chan W. Y. Synthesis and some pharmacological properties of (3-beta-(2-thienyl)-L-alanine)-8-lysine-vasopressin. J Med Chem. 1975 Aug;18(8):822–825. doi: 10.1021/jm00242a012. [DOI] [PubMed] [Google Scholar]
  10. Urry D. W., Walter R. Proposed conformation of oxytocin in solution. Proc Natl Acad Sci U S A. 1971 May;68(5):956–958. doi: 10.1073/pnas.68.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Walter P. Indentification of sites in oxytocin involved in uterine receptor recognition and activation. Fed Proc. 1977 May;36(6):1872–1878. [PubMed] [Google Scholar]
  12. Walter R., Glickson J. D., Schwartz I. L., Havran R. T., Meienhofer J., Urry D. W. Conformation of lysine vasopressin: a comparison with oxytocin. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1920–1924. doi: 10.1073/pnas.69.7.1920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Walter R., Hoffman P. L., Flexner J. B., Flexner L. B. Neurohypophyseal hormones, analogs, and fragments: their effect on puromycin-induced amnesia. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4180–4184. doi: 10.1073/pnas.72.10.4180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Walter R., Schwartz I. L., Darnell J. H., Urry D. W. Relation of the conformation of oxytocin to the biology of neurohypophyseal hormones. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1355–1359. doi: 10.1073/pnas.68.6.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Walter R., Smith C. W., Roy J. Importance of the third amino acid residue of oxytocin for its action on isolated rat uterus: study of relationship between hormone conformation and activity. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3054–3058. doi: 10.1073/pnas.73.9.3054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wang S. S. Synthesis of desglycinamide lysine vasopressin and its behavioral activity in rats. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1511–1515. doi: 10.1016/0006-291x(72)90885-6. [DOI] [PubMed] [Google Scholar]
  17. de Wied D. Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci. 1976 Sep 1;19(5):685–690. doi: 10.1016/0024-3205(76)90165-x. [DOI] [PubMed] [Google Scholar]
  18. de Wied D., Greven H. M., Lande S., Witter A. Dissociation of the behavioural and endocrine effects of lysine vasopressin by tryptic digestion. Br J Pharmacol. 1972 May;45(1):118–122. doi: 10.1111/j.1476-5381.1972.tb09582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van Ree J. M., de Wied D. Prolyl-leucyl-glycinamide (PLG) facilitates morphine dependence. Life Sci. 1976 Nov 1;19(9):1331–1339. doi: 10.1016/0024-3205(76)90430-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES