Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jun;75(6):2584–2587. doi: 10.1073/pnas.75.6.2584

Proposed temperature-dependent conformational transition in D-amino acid oxidase: a differential scanning microcalorimetric study.

J M Sturtevant, P L Mateo
PMCID: PMC392606  PMID: 26913

Abstract

A number of authors have reported observations on D-amino acid oxidase [D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3.] that they have interpreted in terms of a temperature-dependent conformational transition having a van't Hoff enthalpy amounting to more than 1 cal per g of protein (1 cal = 4.184J). No indication of this transition is obtained by using a differential scanning calorimeter having a sensitivity considerably in excess of that required to detect such a transition. The implications of this discrepancy are discussed.

Full text

PDF
2586

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonini E., Brunori M., Bruzzesi R., Chiancone E., Massey V. Association-dissociation phenomena of D-amino acid oxidase. J Biol Chem. 1966 May 25;241(10):2358–2366. [PubMed] [Google Scholar]
  2. Henn S. W., Ackers G. K. Molecular sieve studies of interacting protein systems. V. Association of subunits of D-amino acid oxidase apoenzyme. Biochemistry. 1969 Sep;8(9):3829–3838. doi: 10.1021/bi00837a049. [DOI] [PubMed] [Google Scholar]
  3. Kelly R. C., von Hippel P. H. DNA "melting" proteins. III. Fluorescence "mapping" of the nucleic acid binding site of bacteriophage T4 gene 32-protein. J Biol Chem. 1976 Nov 25;251(22):7229–7239. [PubMed] [Google Scholar]
  4. Koster J. F., Veeger C. The relation between temperature-inducible allosteric effects and the activation energies of amino-acid oxidases. Biochim Biophys Acta. 1968 Aug 27;167(1):48–63. doi: 10.1016/0005-2744(68)90276-3. [DOI] [PubMed] [Google Scholar]
  5. Massey V., Curti B., Ganther H. A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis. J Biol Chem. 1966 May 25;241(10):2347–2357. [PubMed] [Google Scholar]
  6. Mateo P. L., Sturtevant J. M. Thermodynamics of the binding of flavin adenine dinucleotide to D-amino acid oxidase. Biosystems. 1977 Apr;8(4):247–253. doi: 10.1016/0303-2647(77)90050-8. [DOI] [PubMed] [Google Scholar]
  7. Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
  8. Shiga K., Shiga T. The kinetic features of monomers and dimers in high- and low-temperature conformational states of D-amino acid oxidase. Biochim Biophys Acta. 1972 Apr 15;263(2):294–303. doi: 10.1016/0005-2795(72)90082-7. [DOI] [PubMed] [Google Scholar]
  9. Sturtevant J. M. Some applications of calorimetry in biochemistry and biology. Annu Rev Biophys Bioeng. 1974;3(0):35–51. doi: 10.1146/annurev.bb.03.060174.000343. [DOI] [PubMed] [Google Scholar]
  10. Tsong T. Y., Hearn R. P., Wrathall D. P., Sturtevant J. M. A calorimetric study of thermally induced conformational transitions of ribonuclease A and certain of its derivatives. Biochemistry. 1970 Jun 23;9(13):2666–2677. doi: 10.1021/bi00815a015. [DOI] [PubMed] [Google Scholar]
  11. Tu S. C., McCormick D. B. Photoinactivation of porcine D-amino acid oxidase with flavin adenine dinucleotide. J Biol Chem. 1973 Sep 25;248(18):6339–6347. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES