Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Aug;75(8):3635–3639. doi: 10.1073/pnas.75.8.3635

Amino acid sequence of tyrosinase from Neurospora crassa.

K Lerch
PMCID: PMC392840  PMID: 151279

Abstract

The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase.

Full text

PDF
3638

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butler P. J., Harris J. I., Hartley B. S., Lebeman R. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains. Biochem J. 1969 May;112(5):679–689. doi: 10.1042/bj1120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  3. Crawford J. L., Lipscomb W. N., Schellman C. G. The reverse turn as a polypeptide conformation in globular proteins. Proc Natl Acad Sci U S A. 1973 Feb;70(2):538–542. doi: 10.1073/pnas.70.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deinum J., Lerch K., Reinhammar B. An EPR study of Neurospora tyrosinase. FEBS Lett. 1976 Oct 15;69(1):161–164. doi: 10.1016/0014-5793(76)80676-x. [DOI] [PubMed] [Google Scholar]
  5. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  6. FLING M., HOROWITZ N. H., HEINEMANN S. F. The isolation and properties of crystalline tyrosinase from Neurospora. J Biol Chem. 1963 Jun;238:2045–2053. [PubMed] [Google Scholar]
  7. Forman H. J., Evans H. J., Hill R. L., Fridovich I. Histidine at the active site of superoxide dismutase. Biochemistry. 1973 Feb 27;12(5):823–827. doi: 10.1021/bi00729a006. [DOI] [PubMed] [Google Scholar]
  8. Gutteridge S., Robb D. The catecholase activity of Neurospora tyrosinase. Eur J Biochem. 1975 May;54(1):107–116. doi: 10.1111/j.1432-1033.1975.tb04119.x. [DOI] [PubMed] [Google Scholar]
  9. HOROWITZ N. H., FLING M., MACLEOD H., SUEOKA N. A genetic study of two new structural forms of tyrosinase in Neurospora. Genetics. 1961 Aug;46:1015–1024. doi: 10.1093/genetics/46.8.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hermodson M. A., Ericsson L. H., Titani K., Neurath H., Walsh K. A. Application of sequenator analyses to the study of proteins. Biochemistry. 1972 Nov 21;11(24):4493–4502. doi: 10.1021/bi00774a011. [DOI] [PubMed] [Google Scholar]
  11. Jolley R. L., Jr, Evans L. H., Makino N., Mason H. S. Oxytyrosinase. J Biol Chem. 1974 Jan 25;249(2):335–345. [PubMed] [Google Scholar]
  12. Katan T., Galun E. A rapid and efficient method for the purification of tyrosinase from Neurospora. Anal Biochem. 1975 Aug;67(2):485–492. doi: 10.1016/0003-2697(75)90322-x. [DOI] [PubMed] [Google Scholar]
  13. Lerch K. Neurospora tyrosinase: molecular weight, copper content and spectral properties. FEBS Lett. 1976 Oct 15;69(1):157–160. doi: 10.1016/0014-5793(76)80675-8. [DOI] [PubMed] [Google Scholar]
  14. MASON H. S. OXIDASES. Annu Rev Biochem. 1965;34:595–634. doi: 10.1146/annurev.bi.34.070165.003115. [DOI] [PubMed] [Google Scholar]
  15. Makino N., McMahill P., Mason H. S. The oxidation state of copper in resting tyrosinase. J Biol Chem. 1974 Oct 10;249(19):6062–6066. [PubMed] [Google Scholar]
  16. Meloche H. P., Luczak M. A., Wurster J. M. The substrate analog, bromopyruvate, as both a substrate and alkylating agent for 2-keto-3-deoxy-6-phosphogluconic aldolase. Kinetic and stereochemical studies. J Biol Chem. 1972 Jul 10;247(13):4186–4191. [PubMed] [Google Scholar]
  17. Mendez E., Lai C. Y. Regeneration of amino acids from thiazolinones formed in the Edman degradation. Anal Biochem. 1975 Sep;68(1):47–53. doi: 10.1016/0003-2697(75)90677-6. [DOI] [PubMed] [Google Scholar]
  18. Nau H., Lerch K., Witte L. Amino acid sequence determination of the blocked N-terminal tryptic peptide of Neurospora tyrosinase by mass spectrometry. FEBS Lett. 1977 Jul 1;79(1):203–206. doi: 10.1016/0014-5793(77)80384-0. [DOI] [PubMed] [Google Scholar]
  19. Peisach J., Blumberg W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys. 1974 Dec;165(2):691–708. doi: 10.1016/0003-9861(74)90298-7. [DOI] [PubMed] [Google Scholar]
  20. Pisano J. J., Bronzert T. J., Brewer H. B., Jr Advances in the gas chromatographic analysis of amino acid phenyl- and methylthiohydantoins. Anal Biochem. 1972 Jan;45(1):43–59. doi: 10.1016/0003-2697(72)90006-1. [DOI] [PubMed] [Google Scholar]
  21. Richardson J., Thomas K. A., Rubin B. H., Richardson D. C. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1349–1353. doi: 10.1073/pnas.72.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SANO S., TANAKA K. RECOMBINATION OF PROTOPORPHYRINOGEN WITH CYTOCHROME C APOPROTEIN. J Biol Chem. 1964 Sep;239:PC3109–PC3110. [PubMed] [Google Scholar]
  23. Shechter Y., Burstein Y., Patchornik A. Selective oxidation of methionine residues in proteins. Biochemistry. 1975 Oct 7;14(20):4497–4503. doi: 10.1021/bi00691a025. [DOI] [PubMed] [Google Scholar]
  24. Smithies O., Gibson D., Fanning E. M., Goodfliesh R. M., Gilman J. G., Ballantyne D. L. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac. Biochemistry. 1971 Dec 21;10(26):4912–4921. doi: 10.1021/bi00802a013. [DOI] [PubMed] [Google Scholar]
  25. Strothkamp K. G., Jolley R. L., Mason H. S. Quaternary structure of mushroom tyrosinase. Biochem Biophys Res Commun. 1976 May 17;70(2):519–524. doi: 10.1016/0006-291x(76)91077-9. [DOI] [PubMed] [Google Scholar]
  26. Uiterkamp A. J., Mason H. S. Magnetic dipole-dipole coupled Cu(II) pairs in nitric oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. Proc Natl Acad Sci U S A. 1973 Apr;70(4):993–996. doi: 10.1073/pnas.70.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WOOD B. J., INGRAHAM L. L. LABELLED TYROSINASE FROM LABELLED SUBSTRATE. Nature. 1965 Jan 16;205:291–292. doi: 10.1038/205291a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES