Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Aug;75(8):3751–3755. doi: 10.1073/pnas.75.8.3751

Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers.

H Schindler, J P Rosenbusch
PMCID: PMC392864  PMID: 358202

Abstract

Matrix protein from Escherichia coli was integrated into planar lipid bilayers. The incorporated protein generates aqueous channels across these membranes. Channels are induced irreversibly by voltage, and their number is proportional to the protein content of the membrane and stays constant over hours. They are uniform in size, with a diameter of about 1 nm and a single-channel conductance of 0.14 nS in 0.1 M NaCl. In addition to ionic conductance, the channels allow free diffusion of small, uncharged molecules. Channels assume either an open or a closed state. Membrane potentials shift this two-state equilibrium distribution in favor of closed channels, an observation that explains both negative resistance and inactivation at high potentials. Channels are not randomly distributed in the membrane but interact cooperatively within aggregates. The smallest entity inducible consists of three channels.

Full text

PDF
3751

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Arvidson G. A. Fractionation of naturally occurring lecithins according to degree of unsaturation by thin-layer chromatography. J Lipid Res. 1965 Oct;6(4):574–577. [PubMed] [Google Scholar]
  3. Bavoil P., Nikaido H., von Meyenburg K. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol Gen Genet. 1977 Dec 14;158(1):23–33. doi: 10.1007/BF00455116. [DOI] [PubMed] [Google Scholar]
  4. Benz R., Fröhlich O., Läuger P., Montal M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim Biophys Acta. 1975 Jul 3;394(3):323–334. doi: 10.1016/0005-2736(75)90287-4. [DOI] [PubMed] [Google Scholar]
  5. Cubero Robles E., van den Berg D. Synthesis of lecithins by acylation of O-(sn-glycero-3-phosphoryl) choline with fatty acid anhydrides. Biochim Biophys Acta. 1969 Dec 17;187(4):520–526. doi: 10.1016/0005-2760(69)90049-6. [DOI] [PubMed] [Google Scholar]
  6. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  7. McLaughlin S., Eisenberg M. Antibiotics and membrane biology. Annu Rev Biophys Bioeng. 1975;4(00):335–366. doi: 10.1146/annurev.bb.04.060175.002003. [DOI] [PubMed] [Google Scholar]
  8. Montal M. Experimental membranes and mechanisms of bioenergy transductions. Annu Rev Biophys Bioeng. 1976;5:119–175. doi: 10.1146/annurev.bb.05.060176.001003. [DOI] [PubMed] [Google Scholar]
  9. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mueller P., Rudin D. O. Induced excitability in reconstituted cell membrane structure. J Theor Biol. 1963 May;4(3):268–280. doi: 10.1016/0022-5193(63)90006-7. [DOI] [PubMed] [Google Scholar]
  11. Mühlradt P. F. Topography of outer membrane assembly in Salmonella. J Supramol Struct. 1976;5(1):103–108. doi: 10.1002/jss.400050111. [DOI] [PubMed] [Google Scholar]
  12. Nakae T. Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. Biochem Biophys Res Commun. 1976 Aug 9;71(3):877–884. doi: 10.1016/0006-291x(76)90913-x. [DOI] [PubMed] [Google Scholar]
  13. Nikaido H. Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta. 1976 Apr 16;433(1):118–132. doi: 10.1016/0005-2736(76)90182-6. [DOI] [PubMed] [Google Scholar]
  14. Phillips M. C., Hauser H., Paltauf F. The inter- and intra-molecular mixing of hydrocarbon chains in lecithin-water systems. Chem Phys Lipids. 1972 Mar;8(2):127–133. doi: 10.1016/0009-3084(72)90024-2. [DOI] [PubMed] [Google Scholar]
  15. Prehm P., Stirm S., Jann B., Jann K. Cell-wall lipopolysaccharide from Escherichia coli B. Eur J Biochem. 1975 Aug 1;56(1):41–55. doi: 10.1111/j.1432-1033.1975.tb02205.x. [DOI] [PubMed] [Google Scholar]
  16. Racker E., Knowles A. F., Eytan E. Resolution and reconstitution of ion-transport systems. Ann N Y Acad Sci. 1975 Dec 30;264:17–33. doi: 10.1111/j.1749-6632.1975.tb31473.x. [DOI] [PubMed] [Google Scholar]
  17. Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem. 1974 Dec 25;249(24):8019–8029. [PubMed] [Google Scholar]
  18. Schindler H., Feher G. Branched bimolecular lipid membranes. Biophys J. 1976 Sep;16(9):1109–1113. doi: 10.1016/S0006-3495(76)85759-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steven A. C., Heggeler B., Müller R., Kistler J., Rosenbusch J. P. Ultrastructure of a periodic protein layer in the outer membrane of Escherichia coli. J Cell Biol. 1977 Feb;72(2):292–301. doi: 10.1083/jcb.72.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stevens C. F. Study of membrane permeability changes by fluctuation analysis. Nature. 1977 Dec 1;270(5636):391–396. doi: 10.1038/270391a0. [DOI] [PubMed] [Google Scholar]
  21. Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed] [Google Scholar]
  22. Takacs B. J., Rosenbusch J. P. Modification of Escherichia coli membranes in the prereplicative phase of phage T4 infection. Specificity of association and quantitation of bound phage proteins. J Biol Chem. 1975 Mar 25;250(6):2339–2350. [PubMed] [Google Scholar]
  23. Verger R., Pattus F. Spreading of membranes at the air/water interface. Chem Phys Lipids. 1976 Jul;16(4):285–291. doi: 10.1016/0009-3084(76)90023-2. [DOI] [PubMed] [Google Scholar]
  24. Zulauf M. Swelling of brome mosaic virus as studied by intensity fluctuation spectroscopy. J Mol Biol. 1977 Aug 5;114(2):259–266. doi: 10.1016/0022-2836(77)90209-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES