Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Nov;75(11):5324–5328. doi: 10.1073/pnas.75.11.5324

Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.

H Wolf, D Assmann, E Fischer
PMCID: PMC392955  PMID: 364475

Abstract

Pulvomycin and the synonymous antibiotics labilomycin and 1063-Z are shown to inhibit prokaryotic protein synthesis by acting on elongation factor Tu (EF-Tu): in the presence of the antibiotic, the affinity of EF-Tu for guanine nucleotides is altered, the EF-Tu.GDP/GTP exchange is catalyzed, and the formation of the EF-Tu.GTP complex is stimulated. Hydrolysis of GTP by EF-Tu, induced by aminoacyl-tRNA, ribosomes, and mRNA or by kirromycin, is inhibited by pulvomycin. As shown by Millipore filtration, chromatographic analysis, and hydrolysis protection experiments, pulvomycin prevents interaction between aminoacyl-tRNA and EF-Tu.GTP to yield the ternary complex aminoacyl-tRNA.EF-Tu.GTP. Thus, enzymatic binding of aminoacyl-tRNA to ribosomes is blocked.

Full text

PDF
5325

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AKITA E., MAEDA K., UMEZAWA H. CHEMISTRY OF LABILOMYCIN. J Antibiot (Tokyo) 1964 Sep;17:200–215. [PubMed] [Google Scholar]
  2. AKITA E., MAEDA K., UMEZAWA H. ILOLATION AND CHARACTERIZATION OF LABILOMYCIN, A NEW ANTIBIOTIC. J Antibiot (Tokyo) 1963 Jul;16:147–151. [PubMed] [Google Scholar]
  3. Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
  4. Blumenthal T., Douglass J., Smith D. Conformational alteration of protein synthesis elongation factor EF-Tu by EF-Ts and by kirromycin. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3264–3267. doi: 10.1073/pnas.74.8.3264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown S., Blumenthal T. Function and structure in ribonucleic acid phage Qbeta ribonucleic acid replicase. Effect of inhibitors of EF-Tu on ribonucleic acid synthesis and renaturation of active enzyme. J Biol Chem. 1976 May 10;251(9):2749–2753. [PubMed] [Google Scholar]
  6. Chinali G., Wolf H., Parmeggiani A. Effect of kirromycin on elongation factor Tu. Location of the catalytic center for ribosome-elongation-factor-Tu GTPase activity on the elongation factor. Eur J Biochem. 1977 May 2;75(1):55–65. doi: 10.1111/j.1432-1033.1977.tb11503.x. [DOI] [PubMed] [Google Scholar]
  7. Fischer E., Wolf H., Hantke K., Parmeggiani A. Elongation factor Tu resistant to kirromycin in an Escherichia coli mutant altered in both tuf genes. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4341–4345. doi: 10.1073/pnas.74.10.4341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gordon J. A stepwise reaction yielding a complex between a supernatant fraction from E. coli, guanosine 5'-triphosphate, and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1968 Jan;59(1):179–183. doi: 10.1073/pnas.59.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon J. Interaction of guanosine 5'-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1574–1578. doi: 10.1073/pnas.58.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  11. Hamel E., Koka M., Nakamoto T. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J Biol Chem. 1972 Feb 10;247(3):805–814. [PubMed] [Google Scholar]
  12. Kelmers A. D. Preparation of a highly purified phenylalanine transfer ribonucleic acid. J Biol Chem. 1966 Aug 10;241(15):3540–3545. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Maehr H., Leach M., Yarmchuk L., Stempel A. Antibiotic X-5108. V. Structures of antibiotic X-5108 and mocimycin. J Am Chem Soc. 1973 Dec 12;95(25):8449–8450. doi: 10.1021/ja00806a043. [DOI] [PubMed] [Google Scholar]
  15. Maehr H., Williams T. H., Leach M., Stempel A. Antibiotic X-5108. VI. Relative configuration of the tetrahydrofuran moiety of goldinamine. Helv Chim Acta. 1974;57(1):212–213. doi: 10.1002/hlca.19740570127. [DOI] [PubMed] [Google Scholar]
  16. Pingoud A., Urbanke C., Krauss G., Peters F., Maass G. Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. Eur J Biochem. 1977 Sep;78(2):403–409. doi: 10.1111/j.1432-1033.1977.tb11752.x. [DOI] [PubMed] [Google Scholar]
  17. Pingoud A., Urbanke C., Wolf H., Maass G. The binding of kirromycin to elongation factor Tu. Structural alterations are responsible for the inhibitory action. Eur J Biochem. 1978 May;86(1):153–157. doi: 10.1111/j.1432-1033.1978.tb12294.x. [DOI] [PubMed] [Google Scholar]
  18. Schwartz J. L., Tishler M., Arison B. H., Shafer H. M., Omura S. Identification of mycolutein and pulvomycin as aureothin and labilomycin respectively. J Antibiot (Tokyo) 1976 Mar;29(3):236–241. doi: 10.7164/antibiotics.29.236. [DOI] [PubMed] [Google Scholar]
  19. Tanaka N., Kinoshita T., Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun. 1968 Feb 15;30(3):278–283. doi: 10.1016/0006-291x(68)90447-6. [DOI] [PubMed] [Google Scholar]
  20. Wax R., Maises W., Weston R., Birnbaum J. Efrotomycin, a new antibiotic from Streptomyces lactamdurans. J Antibiot (Tokyo) 1976 Jun;29(6):670–673. doi: 10.7164/antibiotics.29.670. [DOI] [PubMed] [Google Scholar]
  21. Wolf H., Chinali G., Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4910–4914. doi: 10.1073/pnas.71.12.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wolf H., Chinali G., Parmeggiani A. Mechanism of the inhibition of protein synthesis by kirromycin. Role of elongation factor Tu and ribosomes. Eur J Biochem. 1977 May 2;75(1):67–75. doi: 10.1111/j.1432-1033.1977.tb11504.x. [DOI] [PubMed] [Google Scholar]
  23. Wolf H., Zähner H. Stoffwechselprodukte von Mikroorganismen. 99. Kirromycin. Arch Mikrobiol. 1972;83(2):147–154. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES