Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Dec;75(12):5765–5769. doi: 10.1073/pnas.75.12.5765

Chemical synthesis of genes for human insulin.

R Crea, A Kraszewski, T Hirose, K Itakura
PMCID: PMC393054  PMID: 282602

Abstract

A rapid chemical procedure has been developed and used for the synthesis of 29 oligodeoxyribonucleotides to build synthetic genes for human insulin. The gene for insulin B chain, 104 base pairs, and the one for A chain, 77 base pairs, were designed from the amino acid sequence of human polypeptides. They bear single-stranded cohesive termini for the EcoRI and BamHI restriction endonucleases and are designed to be inserted separately into a pBR322 plasmid. The synthetic fragments, deca- to pentadecanucleotides, were synthesized by a block phosphotriester method with trinucleotides as building blocks. Final purification was by high-performance liquid chromatography. All 29 oligonucleotides were pure and had the correct sequences.

Full text

PDF
5768

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DU Y. C., ZHANG Y. S., LU Z. X., TSOU C. L. Resynthesis of insulin from its glycyl and phenylalanyl chains. Sci Sin. 1961 May;10:84–104. [PubMed] [Google Scholar]
  2. Heyneker H. L., Shine J., Goodman H. M., Boyer H. W., Rosenberg J., Dickerson R. E., Narang S. A., Itakura K., Lin S., Riggs A. D. Synthetic lac operator DNA is functional in vivo. Nature. 1976 Oct 28;263(5580):748–752. doi: 10.1038/263748a0. [DOI] [PubMed] [Google Scholar]
  3. Itakura K., Hirose T., Crea R., Riggs A. D., Heyneker H. L., Bolivar F., Boyer H. W. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science. 1977 Dec 9;198(4321):1056–1063. doi: 10.1126/science.412251. [DOI] [PubMed] [Google Scholar]
  4. Itakura K., Katagiri N., Bahl C. P., Wightman R. H., Narang S. A. Improved triester approach for the synthesis of pentadecathymidylic acid. J Am Chem Soc. 1975 Dec 10;97(25):7327–7332. doi: 10.1021/ja00858a020. [DOI] [PubMed] [Google Scholar]
  5. Itakura K., Katagiri N., Narang S. A., Bahl C. P., Marians K. J., Wu R. Chemical synthesis and sequence studies of deoxyribooligonucleotides which constitute the duplex sequence of the lactose operator of Escherichia coli. J Biol Chem. 1975 Jun 25;250(12):4592–4600. [PubMed] [Google Scholar]
  6. Jay E., Bambara R., Padmanabhan R., Wu R. DNA sequence analysis: a general, simple and rapid method for sequencing large oligodeoxyribonucleotide fragments by mapping. Nucleic Acids Res. 1974 Mar;1(3):331–353. doi: 10.1093/nar/1.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lübke K., Klostermeyer H. Synthese des Insulins: Anfänge und Fortschritte. Adv Enzymol Relat Areas Mol Biol. 1970;33:445–525. [PubMed] [Google Scholar]
  8. Scheller R. H., Dickerson R. E., Boyer H. W., Riggs A. D., Itakura K. Chemical synthesis of restriction enzyme recognition sites useful for cloning. Science. 1977 Apr 8;196(4286):177–180. doi: 10.1126/science.847463. [DOI] [PubMed] [Google Scholar]
  9. Stawinski J., Hozumi T., Narang S. A., Bahl C. P., Wu R. Arylsulfonyltetrazoles, new coupling reagents and further improvements in the triester method for the synthesis of deoxyribooligonucleotides. Nucleic Acids Res. 1977 Feb;4(2):353–371. doi: 10.1093/nar/4.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. van Boom J. H., de Rooy J. F. Sequence analysis of synthetic oligonucleotides by high-performance liquid anion-exchange chromatography. J Chromatogr. 1977 Jan 21;131:169–177. doi: 10.1016/s0021-9673(00)80930-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES