Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Jan;74(1):1–4. doi: 10.1073/pnas.74.1.1

Effects of pressure on visible spectra of complexes of myoglobin, hemoglobin, cytochrome c, and horse radish peroxidase.

G B Ogunmola, A Zipp, F Chen, W Kauzmann
PMCID: PMC393183  PMID: 189301

Abstract

The spectra of the ferric form of most heme proteins [metmyoglobin, methemoglobin, horse radish peroxidase (EC 1.11.1.7), and ferricytochrome c at pH 1.5] are converted from high-spin (open crevice) structure to low-spin (closed crevice) form under pressure. Pressures up to 8000 kg/cm2 (780 MPa) have no effect on the spectra of high-spin ferro- and ferricytochrome c, which have a closed crevice structure at pH 7.0. Spectra of deoxy-ferromyoglobin and deoxy-ferrohemoglobin are reduced in intensity, but pressure does not change the positions of the absorption maxima. Cyanide ion prevents pressure-induced spectral changes in metmyoglobin and methemoglobin up to 8000 kg/cm2. Carbon monoxide (with a high affinity for the ferro heme iron) has a similar effect on ferromyoglobin and ferrohemoglobin. The pressure required to cause spectral changes in the heme proteins falls in the order, cytochrome c (pH 7.0) greater than horse radish peroxidase greater than myoglobin greater than hemoglobin. We have calculated a volume change of --50 cm3/mol associated with the configurational change accompanying the reformation of the iron-methionine bond in cytochrome c at low pH.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEETLESTONE J., GEORGE P. A MAGNETOCHEMICAL STUDY OF EQUILIBRIA BETWEEN HIGH AND LOW SPIN STATES OF METMYOGLOBIN COMPLEXES. Biochemistry. 1964 May;3:707–714. doi: 10.1021/bi00893a019. [DOI] [PubMed] [Google Scholar]
  2. Fabry T. L., Hunt J. W., Jr Pressure-induced spectral shifts in hemoproteins. Arch Biochem Biophys. 1968 Feb;123(2):428–429. doi: 10.1016/0003-9861(68)90159-8. [DOI] [PubMed] [Google Scholar]
  3. George P., Lyster R. L. CREVICE STRUCTURES IN HEMOPROTEIN REACTIONS. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1013–1029. doi: 10.1073/pnas.44.10.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibson Q. H., Carey F. G. Effect of pressure on the absorption spectrum of some heme compounds. Biochem Biophys Res Commun. 1975 Nov 17;67(2):747–751. doi: 10.1016/0006-291x(75)90876-1. [DOI] [PubMed] [Google Scholar]
  5. Huestis W. H., Raftery M. A. Observation of cooperative ionizations in hemoglobin. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1887–1891. doi: 10.1073/pnas.69.7.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Iizuka T., Kotani M. Analysis of thermal equilibrium between high-spin and low-spin states in ferrihemoglobin complexes. Biochim Biophys Acta. 1969 Dec 23;194(2):351–363. doi: 10.1016/0005-2795(69)90096-8. [DOI] [PubMed] [Google Scholar]
  7. Ogunmola G. B., Kauzmann W., Zipp A. Volume changes in binding of ligands to methemoglobin and metmyoglobin. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4271–4273. doi: 10.1073/pnas.73.12.4271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Perutz M. F., Fersht A. R., Simon S. R., Roberts G. C. Influence of globin structure on the state of the heme. II. Allosteric transitions in methemoglobin. Biochemistry. 1974 May 7;13(10):2174–2186. doi: 10.1021/bi00707a027. [DOI] [PubMed] [Google Scholar]
  9. Rachmilewitz E. A., Peisach J., Blumberg W. E. Studies on the stability of oxyhemoglobin A and its constituent chains and their derivatives. J Biol Chem. 1971 May 25;246(10):3356–3366. [PubMed] [Google Scholar]
  10. Rachmilewitz E. A., Peisach J., Bradley T. B., Blumberg W. E. Role of haemichromes in the formation of inclusion bodies in haemoglobin H disease. Nature. 1969 Apr 19;222(5190):248–250. doi: 10.1038/222248a0. [DOI] [PubMed] [Google Scholar]
  11. SIMKO J. P., Jr, KAUZMANN W. The kinetics of the urea denaturation of hemoglobin. I. Beef oxyhemoglobin. Biochemistry. 1962 Nov;1:1005–1017. doi: 10.1021/bi00912a010. [DOI] [PubMed] [Google Scholar]
  12. Suzuki K., Taniguchi Y., Izui K. Effect of pressure on the combining power of hemoglobin for ethyl isocyanide. J Biochem. 1972 May;71(5):901–904. doi: 10.1093/oxfordjournals.jbchem.a129841. [DOI] [PubMed] [Google Scholar]
  13. Zipp A., Kauzmann W. Pressure denaturation of metmyoglobin. Biochemistry. 1973 Oct 9;12(21):4217–4228. doi: 10.1021/bi00745a028. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES