Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jan;80(1):75–79. doi: 10.1073/pnas.80.1.75

Discriminatory inhibition of protein synthesis in cell-free systems by vaccinia virus transcripts.

G Coppola, R Bablanian
PMCID: PMC393312  PMID: 6296875

Abstract

The effect of vaccinia virus early transcripts on cellular (globin, HeLa, Chinese hamster ovary) and viral (vaccinia, encephalomyocarditis) mRNA function was studied in reticulocyte and wheat germ cell-free protein-synthesizing systems. Vaccinia virus transcripts of two size classes (8-10 S and 4-7 S), generated in vitro by viral cores, inhibited function of cellular and encephalomyocarditis virus mRNA but not that of vaccinia virus in reticulocyte lysate systems. Mild alkaline hydrolysis or micrococcal nuclease treatment of vaccinia virus in vitro transcripts resulted in a loss of their ability to inhibit protein synthesis directed by HeLa cell RNA. Vaccinia virus in vitro transcripts also selectively inhibited HeLa cell protein synthesis in wheat germ systems, suggesting that double-stranded RNA is not involved in this inhibition of protein synthesis. The addition, to the reticulocyte translating system, of cytoplasmic RNA obtained from infected cells in conjunction with cellular mRNA (globin, HeLa) resulted in the inhibition of synthesis of the globin or HeLa polypeptides with little or no effect on the translation of the vaccinia virus proteins. RNA extracted from vaccinia virions inhibited cellular but not vaccinia virus mRNA function when added to the reticulocyte lysate systems with uninfected or infected HeLa cell cytoplasmic RNA.

Full text

PDF
79

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bablanian R., Coppola G., Scribani S., Esteban M. Inhibition of protein synthesis by vaccinia virus. IV. The role of low-molecular-weight viral RNA in the inhibition of protein synthesis. Virology. 1981 Jul 15;112(1):13–24. doi: 10.1016/0042-6822(81)90607-3. [DOI] [PubMed] [Google Scholar]
  2. Bablanian R., Esteban M., Baxt B., Sonnabend J. A. Studies on the mechanisms of vaccina virus cytopathic effects. I. Inhibition of protein synthesis in infected cells is associated with virus-induced RNA synthesis. J Gen Virol. 1978 Jun;39(3):391–402. doi: 10.1099/0022-1317-39-3-391. [DOI] [PubMed] [Google Scholar]
  3. Baglioni C., Lenz J. R., Maroney P. A., Weber L. A. Effect of double-stranded RNA associated with viral messenger RNA on in vitro protein synthesis. Biochemistry. 1978 Aug 8;17(16):3257–3262. doi: 10.1021/bi00609a013. [DOI] [PubMed] [Google Scholar]
  4. Ben-Hamida F., Beaud G. In vitro inhibition of protein synthesis by purified cores from vaccinia virus. Proc Natl Acad Sci U S A. 1978 Jan;75(1):175–179. doi: 10.1073/pnas.75.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Both G. W., Lavi S., Shatkin A. J. Synthesis of all the gene products of the reovirus genome in vivo and in vitro. Cell. 1975 Feb;4(2):173–180. doi: 10.1016/0092-8674(75)90124-5. [DOI] [PubMed] [Google Scholar]
  6. Burgoyne R. D., Stephen J. Further studies on a vaccinia virus cytotoxin present in infected cell extracts: identification as surface tubule monomer and possible mode of action. Arch Virol. 1979;59(1-2):107–119. doi: 10.1007/BF01317900. [DOI] [PubMed] [Google Scholar]
  7. Duesberg P. H., Colby C. On the biosynthesis and structure of double-stranded RNA in vaccinia virus-infected cells. Proc Natl Acad Sci U S A. 1969 Sep;64(1):396–403. doi: 10.1073/pnas.64.1.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fairbanks G., Jr, Levinthal C., Reeder R. H. Analysis of C14-labeled proteins by disc electrophoresis. Biochem Biophys Res Commun. 1965 Aug 16;20(4):393–399. doi: 10.1016/0006-291x(65)90589-9. [DOI] [PubMed] [Google Scholar]
  9. Gershowitz A., Moss B. Abortive transcription products of vaccinia virus are guanylylated, methylated, and polyadenylylated. J Virol. 1979 Sep;31(3):849–853. doi: 10.1128/jvi.31.3.849-853.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grill L. K., Sun J. D., Kandel J. Effect of double stranded RNA on protein synthesis in an in vitro wheat germ embryo system. Biochem Biophys Res Commun. 1976 Nov 8;73(1):149–156. doi: 10.1016/0006-291x(76)90509-x. [DOI] [PubMed] [Google Scholar]
  11. Jen G., Birge C. H., Thach R. E. Comparison of initiation rates of encephalomyocarditis virus and host protein synthesis in infected cells. J Virol. 1978 Sep;27(3):640–647. doi: 10.1128/jvi.27.3.640-647.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KIT S., DUBBS D. R. Biochemistry of vaccinia-infected mouse fibroblasts (strain L-M). I. Effects on nucleic acid and protein synthesis. Virology. 1962 Oct;18:274–285. doi: 10.1016/0042-6822(62)90014-4. [DOI] [PubMed] [Google Scholar]
  13. Krystosek A., Cawthon M. L., Kabat D. Improved methods for purification and assay of eukaryotic messenger ribonucleic acids and ribosomes. Quantitative analysis of their interaction in a fractionated reticulocyte cell-free system. J Biol Chem. 1975 Aug 10;250(15):6077–6084. [PubMed] [Google Scholar]
  14. Mbuy G. N., Morris R. E., Bubel H. C. Inhibition of cellular protein synthesis by vaccinia virus surface tubules. Virology. 1982 Jan 15;116(1):137–147. doi: 10.1016/0042-6822(82)90409-3. [DOI] [PubMed] [Google Scholar]
  15. Metz D. H., Esteban M. Interferon inhibits viral protein synthesis in L cells infected with vaccinia virus. Nature. 1972 Aug 18;238(5364):385–388. doi: 10.1038/238385a0. [DOI] [PubMed] [Google Scholar]
  16. Moss B. Inhibition of HeLa cell protein synthesis by the vaccinia virion. J Virol. 1968 Oct;2(10):1028–1037. doi: 10.1128/jvi.2.10.1028-1037.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moss B., Salzman N. P. Sequential protein synthesis following vaccinia virus infection. J Virol. 1968 Oct;2(10):1016–1027. doi: 10.1128/jvi.2.10.1016-1027.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PLANTEROSE D. N., NISHIMURA C., SALZMAN N. P. The purification of vaccinia virus from cell cultures. Virology. 1962 Oct;18:294–301. doi: 10.1016/0042-6822(62)90016-8. [DOI] [PubMed] [Google Scholar]
  19. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  20. Pelham H. R., Sykes J. M., Hunt T. Characteristics of a coupled cell-free transcription and translation system directed by vaccinia cores. Eur J Biochem. 1978 Jan 2;82(1):199–209. doi: 10.1111/j.1432-1033.1978.tb12012.x. [DOI] [PubMed] [Google Scholar]
  21. Person A., Ben-Hamida F., Beaud G. Inhibition of 40S--Met--tRNAfMet ribosomal initiation complex formation by vaccinia virus. Nature. 1980 Sep 25;287(5780):355–357. doi: 10.1038/287355a0. [DOI] [PubMed] [Google Scholar]
  22. Reijnders L., Aalberg A. M., Kammen A. K., Berns A. J. The effect of double-stranded cowpea mosaic viral RNA on protein synthesis. Biochim Biophys Acta. 1975 Apr 16;390(1):69–77. doi: 10.1016/0005-2787(75)90009-x. [DOI] [PubMed] [Google Scholar]
  23. SHATKIN A. J. ACTINOMYCIN D AND VACCINIA VIRUS INFECTION OF HELA CELLS. Nature. 1963 Jul 27;199:357–358. doi: 10.1038/199357a0. [DOI] [PubMed] [Google Scholar]
  24. Salzman N. P., Sebring E. D. Sequential formation of vaccinia virus proteins and viral deoxyribonucleic acid replication. J Virol. 1967 Feb;1(1):16–23. doi: 10.1128/jvi.1.1.16-23.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schrom M., Bablanian R. Inhibition of protein synthesis by vaccinia virus. I. Characterization of an inhibited cell-free protein-synthesizing system from infected cells. Virology. 1979 Dec;99(2):319–328. doi: 10.1016/0042-6822(79)90011-4. [DOI] [PubMed] [Google Scholar]
  26. Shih D. S., Shih C. T., Zimmern D., Rueckert R. R., Kaesberg P. Translation of encephalomyocarditis virus RNA in reticulocyte lysates: kinetic analysis of the formation of virion proteins and a protein required for processing. J Virol. 1979 May;30(2):472–480. doi: 10.1128/jvi.30.2.472-480.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stern W., Dales S. Biogenesis of vaccinia: relationship of the envelope to virus assembly. Virology. 1976 Nov;75(1):242–255. doi: 10.1016/0042-6822(76)90023-4. [DOI] [PubMed] [Google Scholar]
  28. Venkatesan S., Moss B. In vitro transcription of the inverted terminal repetition of the vaccinia virus genome: correspondence of initiation and cap sites. J Virol. 1981 Feb;37(2):738–747. doi: 10.1128/jvi.37.2.738-747.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES