Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;10(2):407–422. doi: 10.1111/j.1582-4934.2006.tb00408.x

Vascular physiology of a Ca2+ mobilizing second messenger - cyclic ADP - ribose

Andrew Y Zhang 1, Pin - Lan Li 1,*
PMCID: PMC3933130  PMID: 16796808

Abstract

Cyclic ADP-ribose (cADPR) is a novel Ca2+ mobilizing second messenger, which is capable of inducing Ca2+ release from the sarcoplasmic reticulum (SR) via activation of ryanodine receptors (RyR) in vascular cells. This signaling nucleotide has also been reported to participate in generation or modulation of intracellular Ca2+ sparks 2+waves or oscillations, Ca2+-induced Ca2+ release (CICR) and spontaneous transient outward currents (STOCs) in vascular smooth muscle cells (VSMCs). With respect to the role of cADPR-mediated signaling in mediation of vascular responses to different stimuli, there is accumulating evidence showing that cADPR is importantly involved in the Ca2+ response of vascular endothelial cells (ECs) and VSMCs to various chemical factors such as vasoactive agonists acetylcholine, oxotemorine, endothelin, and physical stimuli such as stretch, electrical depolarization and sheer stress. This cADPR-RyR-mediated Ca2+ signaling is now recognized as a fundamental mechanism regulating vascular function. Here we reviewed the literature regarding this cADPR signaling pathway in vascular cells with a major focus on the production of cADPR and its physiological roles in the control of vascular tone and vasomotor response. We also summarized some publish results that unveil the underlying mechanisms mediating the actions of cADPR in vascular cells. Given the importance of Ca2+ in the regulation of vascular function, the results summarized in this brief review will provide new insights into vascular physiology and circulatory regulation.

Keywords: calcium mobilization, signal transduction, arterial myocytes, circulation, second messenger

References

  • 1.Berridge MJ. The biology and medicine of calcium signalling. Mol Cell Endocrinol. 1994;98:119–24. doi: 10.1016/0303-7207(94)90129-5. [DOI] [PubMed] [Google Scholar]
  • 2.Berridge MJ. Elementary and global aspects of calcium signalling. J Physiol. 1997;499:291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Himpens B, Missiaen L, Casteels R. Ca 2+ homeostasis in vascular smooth muscle. J Vasc Res. 1995;32:207–19. doi: 10.1159/000159095. [DOI] [PubMed] [Google Scholar]
  • 4.Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990;259:C3–18. doi: 10.1152/ajpcell.1990.259.1.C3. [DOI] [PubMed] [Google Scholar]
  • 5.Fasolato C, Innocenti B, Pozzan T. Receptor-activated Ca 2+ influx: how many mechanisms for how many channels. Trends Pharmacol Sci. 1994;15:77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  • 6.Petersen OW, Hoyer PE, van Deurs B. Effect of oxygen on the tetrazolium reaction for glucose 6-phosphate dehydrogenase in cryosections of human breast carcinoma, fibrocystic disease and normal breast tissue. Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;50:13–25. doi: 10.1007/BF02889887. [DOI] [PubMed] [Google Scholar]
  • 7.Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca 2+ -mobilizing activity. J Biol Chem. 1989;264:1608–15. [PubMed] [Google Scholar]
  • 8.Takasawa S, Nata K, Yonekura H, Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993;259:370–3. doi: 10.1126/science.8420005. [DOI] [PubMed] [Google Scholar]
  • 9.Lee HC, Aarhus R. Wide distribution of an enzyme that catalyzes the hydrolysis of 34 cyclic ADP-ribose. Biochim Biophys Acta. 1993;1164:68–74. doi: 10.1016/0167-4838(93)90113-6. [DOI] [PubMed] [Google Scholar]
  • 10.Galione A, Lee HC, Busa WB. Ca(2+)-induced Ca 2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991;253:1143–6. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  • 11.Koshiyama H, Lee HC, Tashjian AH., Jr Novel mechanism of intracellular calcium release in pituitary cells. J Biol Chem. 1991;266:16985–8. [PubMed] [Google Scholar]
  • 12.Beers KW, Chini EN, Lee HC, Dousa TP. Metabolism of cyclic ADP-ribose in opossum kidney renal epithelial cells. Am J Physiol. 1995;268:C741–6. doi: 10.1152/ajpcell.1995.268.3.C741. [DOI] [PubMed] [Google Scholar]
  • 13.Lee HC. Asignaling pathway involving cyclic ADP-ribose, cGMP, and nitric oxide. News Physiol Sci. 1994;9:134–7. [Google Scholar]
  • 14.Li PL, Zou AP, Campbell WB. Regulation of KCa-channel activity by cyclic ADP-ribose and ADP-ribose in coronary arterial smooth muscle. Am J Physiol. 1998;275:H1002–10. doi: 10.1152/ajpheart.1998.275.3.H1002. [DOI] [PubMed] [Google Scholar]
  • 15.Li P, Zou AP, Campbell WB. Metabolism and actions of ADP-riboses in coronary arterial smooth muscle. Adv Exp Med Biol. 1997;419:437–41. doi: 10.1007/978-1-4419-8632-0_56. [DOI] [PubMed] [Google Scholar]
  • 16.Li N, Teggatz EG, Li PL, Allaire R, Zou AP. Formation and actions of cyclic ADP-ribose in renal microvessels. Microvasc Res. 2000;60:149–59. doi: 10.1006/mvre.2000.2255. [DOI] [PubMed] [Google Scholar]
  • 17.Li N, Zou AP, Ge ZD, Campbell WB, Li PL. Effect of nitric oxide on calcium-induced calcium release in coronary arterial smooth muscle. Gen Pharmacol. 2000;35:37–45. doi: 10.1016/s0306-3623(01)00089-1. [DOI] [PubMed] [Google Scholar]
  • 18.Zhang G, Teggatz EG, Zhang AY, Koeberl MJ, Yi F, Chen L, Li PL. Cyclic ADP ribose-mediated Ca 2+ signaling in mediating endothelial nitric oxide production in bovine coronary arteries. Am J Physiol Heart Circ Physiol. 2006;290:H1172–81. doi: 10.1152/ajpheart.00441.2005. [DOI] [PubMed] [Google Scholar]
  • 19.Franco L, Zocchi E, Calder L, Guida L, Benatti U, De Flora A. Self-aggregation of the transmembrane gly-coprotein CD38 purified from human erythrocytes. Biochem Biophys Res Commun. 1994;202:1710–5. doi: 10.1006/bbrc.1994.2132. [DOI] [PubMed] [Google Scholar]
  • 20.Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, Lee HC, De Flora A. A single protein immunologically identified as CD38 displays NAD + glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993;196:1459–65. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]
  • 21.Adebanjo OA, Koval A, Moonga BS, Wu XB, Yao S, Bevis PJ, Kumegawa M, Zaidi M, Sun L. Molecular cloning, expression, and functional characterization of a novel member of the CD38 family of ADP-ribosyl cyclases. Biochem Biophys Res Commun. 2000;273:884–9. doi: 10.1006/bbrc.2000.3041. [DOI] [PubMed] [Google Scholar]
  • 22.Deshpande DA, White TA, Guedes AG, Milla C, Walseth TF, Lund FE, Kannan MS. Altered airway responsiveness in CD38-deficient mice. Am J Respir Cell Mol Biol. 2005;32:149–56. doi: 10.1165/rcmb.2004-0243OC. [DOI] [PubMed] [Google Scholar]
  • 23.Teggatz EG, Zhang G, Yi F, Zou AP, Li PL. Vasoconstrictor responses of coronary arteries in CD38 gene knockout mice: role of cyclic ADP-ribose. FASEB J. 2005;19:1088. [Google Scholar]
  • 24.Li PL, Zhang DX, Ge ZD, Campbell WB. Role of ADP-ribose in 11,12-EET-induced activation of K(Ca) channels in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2002;282:H1229–36. doi: 10.1152/ajpheart.00736.2001. [DOI] [PubMed] [Google Scholar]
  • 25.Zhang DX, Zou AP, Li PL. Adenosine diphosphate ribose dilates bovine coronary 36 small arteries through apyrase- and 5'-nucleotidase-mediated metabolism. J Vasc Res. 2001;38:64–72. doi: 10.1159/000051031. [DOI] [PubMed] [Google Scholar]
  • 26.Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  • 27.van Zwieten PA, Doods HN. Muscarinic receptors and drugs in cardiovascular medicine. Cardiovasc Drugs Ther. 1995;9:159–67. doi: 10.1007/BF00877757. [DOI] [PubMed] [Google Scholar]
  • 28.Higashida H, Yokoyama S, Hashii M, Taketo M, Higashida M, Takayasu T, Ohshima T, Takasawa S, Okamoto H, Noda M. Muscarinic receptor-mediated dual regulation of ADP-ribosyl cyclase in NG108-15 neuronal cell membranes. J Biol Chem. 1997;272:31272–7. doi: 10.1074/jbc.272.50.31272. [DOI] [PubMed] [Google Scholar]
  • 29.Ge ZD, Zhang DX, Chen YF, Yi FX, Zou AP, Campbell WB, Li PL. Cyclic ADP-ribose contributes to contraction and Ca 2+ release by M1 muscarinic receptor activation in coronary arterial smooth muscle. J Vasc Res. 2003;40:28–36. doi: 10.1159/000068936. [DOI] [PubMed] [Google Scholar]
  • 30.White TA, Kannan MS, Walseth TF. Intracellular calcium signaling through the cADPR pathway is agonist specific in porcine airway smooth muscle. FASEB J. 2003;17:482–4. doi: 10.1096/fj.02-0622fje. [DOI] [PubMed] [Google Scholar]
  • 31.Giulumian AD, Meszaros LG, Fuchs LC. Endothelin-1-induced contraction of mesenteric small arteries is mediated by ryanodine receptor Ca 2+ channels and cyclic ADP-ribose. J Cardiovasc Pharmacol. 2000;36:758–63. doi: 10.1097/00005344-200012000-00011. [DOI] [PubMed] [Google Scholar]
  • 32.Barone F, Genazzani AA, Conti A, Churchill GC, Palombi F, Ziparo E, Sorrentino V, Galione A, Filippini A. A pivotal role for cADPR-mediated Ca 2+ signaling: regulation of endothelin-induced contraction in peritubular smooth muscle cells. FASEB J. 2002;16:697–705. doi: 10.1096/fj.01-0749com. [DOI] [PubMed] [Google Scholar]
  • 33.Fellner SK, Parker LA. Endothelin B receptor Ca 2+ signaling in shark vascular smooth muscle: participation of inositol trisphosphate and ryanodine receptors. J Exp Biol. 2004;207:3411–7. doi: 10.1242/jeb.01134. [DOI] [PubMed] [Google Scholar]
  • 34.Lee HC. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J Biol Chem. 2005;280:33693–6. doi: 10.1074/jbc.R500012200. [DOI] [PubMed] [Google Scholar]
  • 35.Yamasaki M, Churchill GC, Galione A. Calcium signalling by nicotinic acid adenine dinucleotide phosphate (NAADP) FEBS J. 2005;272:4598–606. doi: 10.1111/j.1742-4658.2005.04860.x. [DOI] [PubMed] [Google Scholar]
  • 36.Higashida H, Zhang J, Hashii M, Shintaku M, Higashida C, Takeda Y. Angiotensin II stimulates cyclic ADP-ribose formation in neonatal rat cardiac myocytes. Biochem J. 2000;352:197–202. Pt 1: [PMC free article] [PubMed] [Google Scholar]
  • 37.Fellner SK, Arendshorst WJ. Angiotensin II Ca 2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways. Am J Physiol Renal Physiol. 2005;288:F785–91. doi: 10.1152/ajprenal.00372.2004. [DOI] [PubMed] [Google Scholar]
  • 38.Yu JZ, Zhang DX, Zou AP, Campbell WB, Li PL. Nitric oxide inhibits Ca(2+) mobilization through cADP-ribose signaling in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2000;279:H873–81. doi: 10.1152/ajpheart.2000.279.3.H873. [DOI] [PubMed] [Google Scholar]
  • 39.White TA, Walseth TF, Kannan MS. Nitric oxide inhibits ADP-ribosyl cyclase through a cGMP-independent pathway in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2002;283:L1065–71. doi: 10.1152/ajplung.00064.2002. [DOI] [PubMed] [Google Scholar]
  • 40.Willmott NJ, Galione A, Smith PA. A cADP-ribose antagonist does not inhibit secretagogue-, caffeine- and nitric oxide-induced Ca 2+ responses in rat pancreatic beta-cells. Cell Calcium. 1995;18:411–9. doi: 10.1016/0143-4160(95)90056-x. [DOI] [PubMed] [Google Scholar]
  • 41.Looms DK, Tritsaris K, Nauntofte B, Dissing S. Nitric oxide and cGMP activate Ca 2+ -release processes in rat parotid acinar cells. Biochem J. 2001;355:87–95. doi: 10.1042/0264-6021:3550087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Willmott N, Sethi JK, Walseth TF, Lee HC, White AM, Galione A. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem. 1996;271:3699–705. doi: 10.1074/jbc.271.7.3699. [DOI] [PubMed] [Google Scholar]
  • 43.Katusic ZS. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role. Am J Physiol Heart Circ Physiol. 2001;281:H981–6. doi: 10.1152/ajpheart.2001.281.3.H981. [DOI] [PubMed] [Google Scholar]
  • 44.Vasquez-Vivar J, Kalyanaraman B, Martasek P. The role of tetrahydrobiopterin in superoxide generation from eNOS: enzymology and physiological implications. Free Radic Res. 2003;37:121–7. doi: 10.1080/1071576021000040655. [DOI] [PubMed] [Google Scholar]
  • 45.Yi FX, Zhang AY, Campbell WB, Zou AP, Van Breemen C, Li PL. Simultaneous in situ monitoring of intracellular Ca 2+ and NO in endothelium of coronary arteries. Am J Physiol Heart Circ Physiol. 2002;283:H2725–32. doi: 10.1152/ajpheart.00428.2002. [DOI] [PubMed] [Google Scholar]
  • 46.Deshpande DA, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose-mediated Ca 2+ signaling contributes to airway smooth muscle hyper-responsiveness. FASEB J. 2003;17:452–4. doi: 10.1096/fj.02-0450fje. [DOI] [PubMed] [Google Scholar]
  • 47.Higashida H, Egorova A, Hoshi N, Noda M. Streptozotocin, an inducer of NAD+ decrease, attenuates M-potassium current inhibition by ATP, bradykinin, angiotensin II, endothelin 1 and acetylcholine in NG108-15 cells. FEBS Lett. 1996;379:236–8. doi: 10.1016/0014-5793(95)01516-7. [DOI] [PubMed] [Google Scholar]
  • 48.Zhang AY, Yi F, Teggatz EG, Zou AP, Li PL. Enhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle. Microvasc Res. 2004;67:159–67. doi: 10.1016/j.mvr.2003.11.001. [DOI] [PubMed] [Google Scholar]
  • 49.Kumasaka S, Shoji H, Okabe E. Novel mechanisms involved in superoxide anion radical-triggered Ca 2+ release from cardiac sarcoplasmic reticulum linked to cyclic ADP-ribose stimulation. Antioxid Redox Signal. 1999;1:55–69. doi: 10.1089/ars.1999.1.1-55. [DOI] [PubMed] [Google Scholar]
  • 50.Geiger J, Zou AP, Campbell WB, Li PL. Inhibition of cADP-ribose formation produces vasodilation in bovine coronary arteries. Hypertension. 2000;35:397–402. doi: 10.1161/01.hyp.35.1.397. [DOI] [PubMed] [Google Scholar]
  • 51.Zhang DX, Harrison MD, Li PL. Calcium-induced calcium release and cyclic ADP-ribose-mediated signaling in the myocytes from small coronary arteries. Microvasc Res. 2002;64:339–48. doi: 10.1006/mvre.2002.2439. [DOI] [PubMed] [Google Scholar]
  • 52.Kuemmerle JF, Murthy KS, Makhlouf GM. Longitudinal smooth muscle of the mammalian intestine. A model for Ca 2+ signaling by cADPR. Cell Biochem Biophys. 1998;28:31–44. doi: 10.1007/BF02738308. [DOI] [PubMed] [Google Scholar]
  • 53.Lee HC. Aunified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP. Biol Chem. 1999;380:785–93. doi: 10.1515/BC.1999.098. [DOI] [PubMed] [Google Scholar]
  • 54.Berruet L, Muller-Steffner H, Schuber F. Occurrence of bovine spleen CD38/NAD + glycohydrolase disulfide-linked dimers. Biochem Mol Biol Int. 1998;46:847–55. [PubMed] [Google Scholar]
  • 55.Vu CQ, Coyle DL, Tai HH, Jacobson EL, Jacobson MK. Intramolecular ADP-ribose transfer reactions and calcium signalling. Potential role of 2'-phospho-cyclic ADP-ribose in oxidative stress. Adv Exp Med Biol. 1997;419:381–8. [PubMed] [Google Scholar]
  • 56.Tohgo A, Munakata H, Takasawa S, Nata K, Akiyama T, Hayashi N, Okamoto H. Lysine 129 of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydro-lase) participates in the binding of ATP to inhibit the cyclic ADP-ribose hydrolase. J Biol Chem. 1997;272:3879–82. doi: 10.1074/jbc.272.7.3879. [DOI] [PubMed] [Google Scholar]
  • 57.Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H, Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993;268:26052–4. [PubMed] [Google Scholar]
  • 58.Galione A, White A, Willmott N, Turner M, Potter BV, Watson SP. cGMP mobilizes intracellular Ca 2+ in sea urchin eggs by stimulating cyclic ADP-ribose syn-thesis. Nature. 1993;365:456–9. doi: 10.1038/365456a0. [DOI] [PubMed] [Google Scholar]
  • 59.Chini EN, Beers KW, Chini CC, Dousa TP. Specific modulation of cyclic ADP-ribose-induced Ca 2+ release by polyamines. Am J Physiol. 1995;269:C1042–7.60. doi: 10.1152/ajpcell.1995.269.4.C1042. [DOI] [PubMed] [Google Scholar]
  • 60.Wilson HL, Galione A. Differential regulation of nicotinic acid-adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochem J. 1998;331:837–43. doi: 10.1042/bj3310837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Higashida H, Egorova A, Higashida C, Zhong ZG, Yokoyama S, Noda M, Zhang JS. Sympathetic potentiation of cyclic ADP-ribose formation in rat cardiac myocytes. J Biol Chem. 1999;274:33348–54. doi: 10.1074/jbc.274.47.33348. [DOI] [PubMed] [Google Scholar]
  • 62.Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH. Abscisic acid signaling through cyclic ADP-ribose in plants. Science. 1997;278:2126–30. doi: 10.1126/science.278.5346.2126. [DOI] [PubMed] [Google Scholar]
  • 63.Morad M, Suzuki YJ. Redox regulation of cardiac muscle calcium signaling. Antioxid Redox Signal. 2000;2:65–71. doi: 10.1089/ars.2000.2.1-65. [DOI] [PubMed] [Google Scholar]
  • 64.Chidambaram N, Wong ET, Chang CF. Differential oligomerization of membrane-bound CD38/ADP-ribo-syl cyclase in porcine heart microsomes. Biochem Mol Biol Int. 1998;44:1225–33. doi: 10.1080/15216549800202322. [DOI] [PubMed] [Google Scholar]
  • 65.Guida L, Franco L, Zocchi E, De Flora A. Structural role of disulfide bridges in the cyclic ADP-ribose related bifunctional ectoenzyme CD38. FEBS Lett. 1995;368:481–4. doi: 10.1016/0014-5793(95)00715-l. [DOI] [PubMed] [Google Scholar]
  • 66.Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura H, Okamoto H. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J Biol Chem. 1994;269:28555–7. [PubMed] [Google Scholar]
  • 67.Yu J, Chait BT, Toll L, Kreek MJ. Nociceptin in vitro biotransformation in human blood. Peptides. 1996;17:873–6. doi: 10.1016/0196-9781(96)00079-4. [DOI] [PubMed] [Google Scholar]
  • 68.Li PL, Tang WX, Valdivia HH, Zou AP, Campbell WB. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2001;280:H208–15. doi: 10.1152/ajpheart.2001.280.1.H208. [DOI] [PubMed] [Google Scholar]
  • 69.Kannan MS, Fenton AM, Prakash YS, Sieck GC. Cyclic ADP-ribose stimulates sarcoplasmic reticulum calcium release in porcine coronary artery smooth muscle. Am J Physiol. 1996;270:H801–6. doi: 10.1152/ajpheart.1996.270.2.H801. [DOI] [PubMed] [Google Scholar]
  • 70.Lahouratate P, Guibert J, Faivre JF. cADP-ribose releases Ca 2+ from cardiac sarcoplasmic reticulum independently of ryanodine receptor. Am J Physiol. 1997;273:H1082–9. doi: 10.1152/ajpheart.1997.273.3.H1082. [DOI] [PubMed] [Google Scholar]
  • 71.Sitsapesan R, McGarry SJ, Williams AJ. Cyclic ADP-ribose competes with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca(2+)-release channel. Circ Res. 1994;75:596–600. doi: 10.1161/01.res.75.3.596. [DOI] [PubMed] [Google Scholar]
  • 72.Bolton TB, Gordienko DV. Confocal imaging of calcium release events in single smooth muscle cells. Acta Physiol Scand. 1998;164:567–75. doi: 10.1046/j.1365-201X.1998.00464.x. [DOI] [PubMed] [Google Scholar]
  • 73.Ruehlmann DO, Lee CH, Poburko D, van Breemen C. Asynchronous Ca(2+) waves in intact venous smooth muscle. Circ Res. 2000;86:E72–9. doi: 10.1161/01.res.86.4.e72. [DOI] [PubMed] [Google Scholar]
  • 74.Kamishima T, McCarron JG. Regulation of the cytosolic Ca 2+ concentration by Ca 2+ stores in single smooth muscle cells from rat cerebral arteries. J Physiol. 1997;501:497–508. doi: 10.1111/j.1469-7793.1997.497bm.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Vandier C, Delpech M, Rebocho M, Bonnet P. Hypoxia enhances agonist-induced pulmonary arterial contraction by increasing calcium sequestration. Am J Physiol. 1997;273:H1075–81. doi: 10.1152/ajpheart.1997.273.3.H1075. [DOI] [PubMed] [Google Scholar]
  • 76.Jabr RI, Toland H, Gelband CH, Wang XX, Hume JR. Prominent role of intracellular Ca 2+ release in hypoxic vasoconstriction of canine pulmonary artery. Br J Pharmacol. 1997;122:21–30. doi: 10.1038/sj.bjp.0701326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Teggatz EG, Zhang G, Zhang AY, Yi F, Li N, Zou AP, Li PL. Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries. Microvasc Res. 2005;70:65–75. doi: 10.1016/j.mvr.2005.06.004. [DOI] [PubMed] [Google Scholar]
  • 78.Kannan MS, Prakash YS, Brenner T, Mickelson JR, Sieck GC. Role of ryanodine receptor channels in Ca 2+ oscillations of porcine tracheal smooth muscle. Am J Physiol. 1997;272:L659–64. doi: 10.1152/ajplung.1997.272.4.L659. [DOI] [PubMed] [Google Scholar]
  • 79.Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995;270:633–7. doi: 10.1126/science.270.5236.633. [DOI] [PubMed] [Google Scholar]
  • 80.Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol. 2000;278:C235–56. doi: 10.1152/ajpcell.2000.278.2.C235. [DOI] [PubMed] [Google Scholar]
  • 81.Lukyanenko V, Gyorke S. Ca 2+ sparks and Ca 2+ waves in saponin-permeabilized rat ventricular myocytes. J Physiol. 1999;521:575–85. doi: 10.1111/j.1469-7793.1999.00575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Bychkov R, Gollasch M, Ried C, Luft FC, Haller H. Regulation of spontaneous transient outward potassium currents in human coronary arteries. Circulation. 1997;95:503–10. doi: 10.1161/01.cir.95.2.503. [DOI] [PubMed] [Google Scholar]
  • 83.Cui Y, Galione A, Terrar DA. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem J. 1999;342:269–73. [PMC free article] [PubMed] [Google Scholar]
  • 84.Franzini-Armstrong C, Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev. 1997;77:699–729. doi: 10.1152/physrev.1997.77.3.699. [DOI] [PubMed] [Google Scholar]
  • 85.Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff MI. FKBP12.6 and cADPR regulation of Ca 2+ release in smooth muscle cells. Am J Physiol Cell Physiol. 2004;286:C538–46. doi: 10.1152/ajpcell.00106.2003. [DOI] [PubMed] [Google Scholar]
  • 86.Tang WX, Chen YF, Zou AP, Campbell WB, Li PL. Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2002;282:H1304–10. doi: 10.1152/ajpheart.00843.2001. [DOI] [PubMed] [Google Scholar]
  • 87.Noguchi N, Takasawa S, Nata K, Tohgo A, Kato I, Ikehata F, Yonekura H, Okamoto H. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem. 1997;272:3133–6. doi: 10.1074/jbc.272.6.3133. [DOI] [PubMed] [Google Scholar]
  • 88.Chen YF, Zhang AY, Zou AP, Campbell WB, Li PL. Protein methylation activates reconstituted ryanodine receptor-ca release channels from coronary artery myocytes. J Vasc Res. 2004;41:229–40. doi: 10.1159/000078178. [DOI] [PubMed] [Google Scholar]
  • 89.Evans AM, Wyatt CN, Kinnear NP, Clark JH, Blanco EA. Pyridine nucleotides and calcium signalling in arterial smooth muscle: from cell physiology to pharmacology. Pharmacol Ther. 2005;107:286–313. doi: 10.1016/j.pharmthera.2005.03.003. [DOI] [PubMed] [Google Scholar]
  • 90.Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2005;288:L773–88. doi: 10.1152/ajplung.00217.2004. [DOI] [PubMed] [Google Scholar]
  • 91.Chini EN, de Toledo FG, Thompson MA, Dousa TP. Effect of estrogen upon cyclic ADP ribose metabolism: beta-estradiol stimulates ADP ribosyl cyclase in rat uterus. Proc Natl Acad Sci USA. 1997;94:5872–6. doi: 10.1073/pnas.94.11.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.de Toledo FG, Cheng J, Dousa TP. Retinoic acid and triiodothyronine stimulate ADP-ribosyl cyclase activity in rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1997;238:847–50. doi: 10.1006/bbrc.1997.7392. [DOI] [PubMed] [Google Scholar]
  • 93.Morita K, Kitayama S, Dohi T. Stimulation of cyclic ADP-ribose synthesis by acetylcholine and its role in catecholamine release in bovine adrenal chromaffin cells. J Biol Chem. 1997;272:21002–9. doi: 10.1074/jbc.272.34.21002. [DOI] [PubMed] [Google Scholar]
  • 94.Prakash YS, Kannan MS, Walseth TF, Sieck GC. Role of cyclic ADP-ribose in the regulation of [Ca 2+] i in porcine tracheal smooth muscle. Am J Physiol. 1998;274:C1653–60. doi: 10.1152/ajpcell.1998.274.6.C1653. [DOI] [PubMed] [Google Scholar]
  • 95.Dipp M, Evans AM. Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. Circ Res. 2001;89:77–83. doi: 10.1161/hh1301.093616. [DOI] [PubMed] [Google Scholar]
  • 96.Schnackenberg CG. Oxygen radicals in cardiovascular-renal disease. Curr Opin Pharmacol. 2002;2:121–5. doi: 10.1016/s1471-4892(02)00133-9. [DOI] [PubMed] [Google Scholar]
  • 97.Rathaus M, Bernheim J. Oxygen species in the microvascular environment: regulation of vascular tone and the development of hypertension. Nephrol Dial Transplant. 2002;17:216–21. doi: 10.1093/ndt/17.2.216. [DOI] [PubMed] [Google Scholar]
  • 98.Chakraborti T, Ghosh SK, Michael JR, Batabyal SK, Chakraborti S. Targets of oxidative stress in cardiovascular system. Mol Cell Biochem. 1998;187:1–10. doi: 10.1023/a:1006802903504. [DOI] [PubMed] [Google Scholar]
  • 99.Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol. 2000;20:1430–42. doi: 10.1161/01.atv.20.6.1430. [DOI] [PubMed] [Google Scholar]
  • 100.Kawakami M, Okabe E. Superoxide anion radical-triggered Ca 2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca 2+ channel. Mol Pharmacol. 1998;53:497–503. doi: 10.1124/mol.53.3.497. [DOI] [PubMed] [Google Scholar]
  • 101.Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol. 1998;275:C1–24. doi: 10.1152/ajpcell.1998.275.1.C1. [DOI] [PubMed] [Google Scholar]
  • 102.Suzuki YJ, Ford GD. Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol. 1999;31:345–53. doi: 10.1006/jmcc.1998.0872. [DOI] [PubMed] [Google Scholar]
  • 103.Graeff RM, Franco L, De Flora A, Lee HC. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem. 1998;273:118–25. doi: 10.1074/jbc.273.1.118. [DOI] [PubMed] [Google Scholar]
  • 104.Kannan MS, Prakash YS, Johnson DE, Sieck GC. Nitric oxide inhibits calcium release from sarcoplasmic reticulum of porcine tracheal smooth muscle cells. Am J Physiol. 1997;272:L1–7. doi: 10.1152/ajplung.1997.272.1.L1. [DOI] [PubMed] [Google Scholar]
  • 105.Falck JR, Krishna UM, Reddy YK, Kumar PS, Reddy KM, Hittner SB, Deeter C, Sharma KK, Gauthier KM, Campbell WB. Comparison of vasodilatory properties of 14,15-EET analogs: structural requirements for dilation. Am J Physiol Heart Circ Physiol. 2003;284:H337–49. doi: 10.1152/ajpheart.00831.2001. [DOI] [PubMed] [Google Scholar]
  • 106.Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation. 2003;107:769–76. doi: 10.1161/01.cir.0000047278.28407.c2. [DOI] [PubMed] [Google Scholar]
  • 107.Zhang AY, Teggatz EG, Zou AP, Campbell WB, Li PL. Endostatin uncouples NO and Ca 2+ response to bradykinin through enhanced O2 -. production in the intact coronary endothelium. Am J Physiol Heart Circ Physiol. 2005;288:H686–94. doi: 10.1152/ajpheart.00174.2004. [DOI] [PubMed] [Google Scholar]
  • 108.Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB. Role of Ca 2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol. 2002;39:173–85. doi: 10.1016/s1537-1891(03)00007-7. [DOI] [PubMed] [Google Scholar]
  • 109.Putney JW., Jr TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry. Proc Natl Acad Sci USA. 1999;96:14669–71. doi: 10.1073/pnas.96.26.14669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. Lack of an endothelial store-operated Ca 2+ current impairs agonist-dependent vasorelaxation in TRP4-/-mice. Nat Cell Biol. 2001;3:121–7. doi: 10.1038/35055019. [DOI] [PubMed] [Google Scholar]
  • 111.Faehling M, Kroll J, Fohr KJ, Fellbrich G, Mayr U, Trischler G, Waltenberger J. Essential role of calcium in vascular endothelial growth factor A-induced signaling: mechanism of the antiangiogenic effect of car-boxyamidotriazole. FASEB J. 2002;16:1805–7. doi: 10.1096/fj.01-0938fje. [DOI] [PubMed] [Google Scholar]
  • 112.Graier WF, Schmidt K, Kukovetz WR. Bradykinin-induced Ca(2+)-influx into cultured aortic endothelial cells is not regulated by inositol 1,4,5-trisphosphate or inositol 1,3,4,5-tetrakisphosphate. Second Messengers Phosphoproteins. 1991;13:187–97. [PubMed] [Google Scholar]
  • 113.Pasyk E, Inazu M, Daniel EE. CPA enhances Ca 2+ entry in cultured bovine pulmonary arterial endothelial cells in an IP 3 -independent manner. Am J Physiol. 1995;268:H138–46. doi: 10.1152/ajpheart.1995.268.1.H138. [DOI] [PubMed] [Google Scholar]
  • 114.Fleming I, Busse R. Tyrosine phosphorylation and bradykinin-induced signaling in endothelial cells. Am J Cardiol. 1997;80:102A–09A. doi: 10.1016/s0002-9149(97)00464-5. [DOI] [PubMed] [Google Scholar]
  • 115.Higashida H, Yokoyama S, Hoshi N, Hashii M, Egorova A, Zhong ZG, Noda M, Shahidullah M, Taketo M, Knijnik R, Kimura Y, Takahashi H, Chen XL, Shin Y, Zhang JS. Signal transduction from bradykinin, angiotensin, adrenergic and muscarinic receptors to effector enzymes, including ADP-ribosyl cyclase. Biol Chem. 2001;382:23–30. doi: 10.1515/BC.2001.004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES