Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jan;80(2):334–338. doi: 10.1073/pnas.80.2.334

In vivo31P NMR study of the metabolism of murine mammary 16/C adenocarcinoma and its response to chemotherapy, x-radiation, and hyperthermia

W T Evanochko *, T C Ng *, M B Lilly *,, A J Lawson , T H Corbett §, J R Durant *,, J D Glickson *,
PMCID: PMC393371  PMID: 6572896

Abstract

31P NMR spectroscopy with surface coils has been used to monitor, in vivo, the phosphate metabolism of subcutaneously implanted mammary 16/C adenocarcinoma in C3H/He mice. This model tumor was studied during untreated tumor growth and after treatment with adriamycin, hyperthermia, and x-radiation. The mammary 16/C tumor exhibited a Gompertzian growth pattern. Levels of high-energy phosphate metabolites—phosphocreatine and ATP—decreased with increases in tumor mass. There was a concomitant increase in the level of Pi and a decrease in the apparent pH of the tumor. These spectral changes appear to reflect changes in tumor vascularization that accompany tumor growth, the tumor becoming progressively more hypoxic. Partial response of this tumor to chemotherapy with adriamycin was reflected in a small but measurable increase in the phosphocreatine resonance, a decrease in Pi, and a return of the intra-tumor pH to neutral. Hyperthermia resulted in progressive conversion of the 31P NMR spectrum to that of a dead tumor (high levels of Pi, small levels of residual sugar phosphates and pyridine dinucleotides, and acidic pH). X-irradiation (14.0 Gy) led to disappearance of the phosphocreatine peak within 15 min of treatment. Subsequently, this resonance grew back beyond its pretreatment level. As the tumor receded, its spectrum reflected the characteristics of aerobically metabolizing tissue (high levels of phosphocreatine and ATP and low levels of Pi and sugar phosphates).

Keywords: phosphate metabolism, tumors, cancer therapy, surface coil NMR, breast cancer

Full text

PDF
337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman J. J., Grove T. H., Wong G. G., Gadian D. G., Radda G. K. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature. 1980 Jan 10;283(5743):167–170. doi: 10.1038/283167a0. [DOI] [PubMed] [Google Scholar]
  2. Balaban R. S., Gadian D. G., Radda G. K. Phosphorus nuclear magnetic resonance study of the rat kidney in vivo. Kidney Int. 1981 Nov;20(5):575–579. doi: 10.1038/ki.1981.179. [DOI] [PubMed] [Google Scholar]
  3. Brezovich I. A., Lilly M. B., Durant J. R., Richards D. B. A practical system for clinical radiofrequency hyperthermia. Int J Radiat Oncol Biol Phys. 1981 Mar;7(3):423–430. doi: 10.1016/0360-3016(81)90120-6. [DOI] [PubMed] [Google Scholar]
  4. Burt C. T., Cohen S. M., Bárány M. Analysis with intact tissue with 31P NMR. Annu Rev Biophys Bioeng. 1979;8:1–25. doi: 10.1146/annurev.bb.08.060179.000245. [DOI] [PubMed] [Google Scholar]
  5. Burt C. T., Glonek T., Bárány M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J Biol Chem. 1976 May 10;251(9):2584–2591. [PubMed] [Google Scholar]
  6. Chance B., Eleff S., Leigh J. S., Jr Noninvasive, nondestructive approaches to cell bioenergetics. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7430–7434. doi: 10.1073/pnas.77.12.7430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chance B., Nakase Y., Bond M., Leigh J. S., Jr, McDonald G. Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4925–4929. doi: 10.1073/pnas.75.10.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Corbett T. H., Griswold D. P., Jr, Roberts B. J., Peckham J. C., Schabel F. M., Jr Biology and therapeutic response of a mouse mammary adenocarcinoma (16/C) and its potential as a model for surgical adjuvant chemotherapy. Cancer Treat Rep. 1978 Oct;62(10):1471–1488. [PubMed] [Google Scholar]
  9. Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971 Mar 19;171(3976):1151–1153. doi: 10.1126/science.171.3976.1151. [DOI] [PubMed] [Google Scholar]
  10. Evans F. E., Kaplan N. O. 31P nuclear magnetic resonance studies of HeLa cells. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4909–4913. doi: 10.1073/pnas.74.11.4909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gadian D. G., Radda G. K. NMR studies of tissue metabolism. Annu Rev Biochem. 1981;50:69–83. doi: 10.1146/annurev.bi.50.070181.000441. [DOI] [PubMed] [Google Scholar]
  12. Griffiths J. R., Stevens A. N., Iles R. A., Gordon R. E., Shaw D. 31P-NMR investigation of solid tumours in the living rat. Biosci Rep. 1981 Apr;1(4):319–325. doi: 10.1007/BF01114871. [DOI] [PubMed] [Google Scholar]
  13. Grove T. H., Ackerman J. J., Radda G. K., Bore P. J. Analysis of rat heart in vivo by phosphorus nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1980 Jan;77(1):299–302. doi: 10.1073/pnas.77.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gupta R. K., Yushok W. D. Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1980 May;77(5):2487–2491. doi: 10.1073/pnas.77.5.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hazelwood C. F., Chang D. C., Medina D., Cleveland G., Nichols B. L. Distinction between the preneoplastic and neoplastic state of murine mammary glands. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1478–1480. doi: 10.1073/pnas.69.6.1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hollis D. P., Economou J. S., Parks L. C., Eggleston J. C., Saryan L. A., Czeister J. L. Nuclear magnetic resonance studies of several experimental and human malignant tumors. Cancer Res. 1973 Sep;33(9):2156–2160. [PubMed] [Google Scholar]
  17. Navon G., Navon R., Shulman R. G., Yamane T. Phosphate metabolites in lymphoid, Friend erythroleukemia, and HeLa cells observed by high-resolution 31P nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1978 Feb;75(2):891–895. doi: 10.1073/pnas.75.2.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Navon G., Ogawa S., Shulman R. G., Yamane T. 31P nuclear magnetic resonance studies of Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1977 Jan;74(1):87–91. doi: 10.1073/pnas.74.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roberts J. K., Wade-Jardetzky N., Jardetzky O. Intracellular pH measurements by 31P nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Biochemistry. 1981 Sep 15;20(19):5389–5394. doi: 10.1021/bi00522a006. [DOI] [PubMed] [Google Scholar]
  20. Teicher B. A., Lazo J. S., Sartorelli A. C. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res. 1981 Jan;41(1):73–81. [PubMed] [Google Scholar]
  21. Weisman I. D., Bennett L. H., Maxwell L. R., Sr, Woods M. W., Burk D. Recognition of cancer in vivo by nuclear magnetic resonance. Science. 1972 Dec 22;178(4067):1288–1290. doi: 10.1126/science.178.4067.1288. [DOI] [PubMed] [Google Scholar]
  22. Yushok W. D., Gupta R. K. Phosphocreatine in Ehrlich ascites tumor cells detected by noninvasive 31P NMR spectroscopy. Biochem Biophys Res Commun. 1980 Jul 16;95(1):73–81. doi: 10.1016/0006-291x(80)90706-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES