Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jan;80(2):393–396. doi: 10.1073/pnas.80.2.393

Iron-sulfur stoichiometry and structure of iron-sulfur clusters in three-iron proteins: Evidence for [3Fe-4S] clusters

Helmut Beinert *, Mark H Emptage *, Jean-Luc Dreyer *,, Robert A Scott , James E Hahn §, Keith O Hodgson §, Andrew J Thomson
PMCID: PMC393383  PMID: 6300839

Abstract

Beef heart aconitase contains 3Fe clusters in its inactive and 4Fe clusters in its active form. The fully active form can be restored from the inactive one by insertion of Fe2+, whereas S2- is not required. Chemical analyses for iron and labile sulfide yield Fe/S2- ratios of 0.66-0.74 for the inactive and 0.90-1.03 for the active form. Sulfane sulfur (S0) was not detected. We propose on the basis of these data that the inactive form may arise from the active one by loss of one iron only per cluster with the sulfur remaining as S2- in a [3Fe-4S] structure. Measurements by extended x-ray absorption fine structure (EXAFS) spectroscopy on the 3Fe form of aconitase yield a Fe··S distance of 2.24 Å and a Fe··Fe distance of 2.71 Å. This Fe··Fe distance is in agreement with that obtained by EXAFS on ferredoxin II of Desulfovibrio gigas, another 3Fe protein, but disagrees with Fe··Fe distances observed for the 3Fe cluster of Azotobacter vinelandii ferredoxin I by x-ray diffraction—namely, 4.1 Å. We suggest that this difference may be due to the presence of a [3Fe-3S] structure in the Azotobacter ferredoxin I crystals vs. a [3Fe-4S] structure in liquid or frozen solutions of aconitase. The [3Fe-3S] cluster has been shown to have a relatively flat twist-boat structure, whereas a [3Fe-4S] cluster could be expected to essentially maintain the compact structure of the [4Fe-4S] cluster. This would explain the differences in Fe··Fe distances. Two possible structural models for a [3Fe-4S] cluster are discussed.

Keywords: active aconitase, inactive aconitase, Fe/S2- ratios, extended x-ray absorption fine structure, Fe··Fe distance

Full text

PDF
396

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonio M. R., Averill B. A., Moura I., Moura J. J., Orme-Johnson W. H., Teo B. K., Xavier A. V. Core dimensions in the 3Fe cluster of Desulfovibrio gigas ferredoxin II by extended X-ray absorption fine structure spectroscopy. J Biol Chem. 1982 Jun 25;257(12):6646–6649. [PubMed] [Google Scholar]
  2. Baugh R. F., King T. E. Purification, properties and reconstitutive activity of a DPHN dehydrogenase. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1165–1173. doi: 10.1016/0006-291x(72)90591-8. [DOI] [PubMed] [Google Scholar]
  3. Beinert H. Micro methods for the quantitative determination of iron and copper in biological material. Methods Enzymol. 1978;54:435–445. doi: 10.1016/s0076-6879(78)54027-5. [DOI] [PubMed] [Google Scholar]
  4. Bell S. H., Dickson D. P., Johnson C. E., Cammack R., Hall D. O., Rao K. K. Mössbauer spectroscopic evidence for the conversion of [4 Fe--4 S] clusters in Bacillus stearothermophilus ferredoxin into [3 Fe--3 S] clusters. FEBS Lett. 1982 Jun 1;142(1):143–146. doi: 10.1016/0014-5793(82)80238-x. [DOI] [PubMed] [Google Scholar]
  5. Davies J. R., Scopes R. K. Purification of some tricarboxylic acid cycle enzymes from beef heart using affinity elution chromatography. Anal Biochem. 1981 Jun;114(1):19–27. doi: 10.1016/0003-2697(81)90444-9. [DOI] [PubMed] [Google Scholar]
  6. Emptage M. H., Kent T. A., Huynh B. H., Rawlings J., Orme-Johnson W. H., Münck E. On the nature of the iron-sulfur centers in a ferredoxin from Azotobacter vinelandii. Mössbauer studies and cluster displacement experiments. J Biol Chem. 1980 Mar 10;255(5):1793–1796. [PubMed] [Google Scholar]
  7. Gawron O., Sr, Kennedy M. C., Rauner R. A. Properties of pig heart aconitase. Biochem J. 1974 Dec;143(3):717–722. doi: 10.1042/bj1430717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gawron O., Waheed A., Glaid A. J., 3rd, Jaklitsch A. Iron and aconitase activity. Biochem J. 1974 Jun;139(3):709–714. doi: 10.1042/bj1390709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghosh D., O'Donnell S., Furey W., Jr, Robbins A. H., Stout C. D. Iron-sulfur clusters and protein structure of Azotobacter ferredoxin at 2.0 A resolution. J Mol Biol. 1982 Jun 15;158(1):73–109. doi: 10.1016/0022-2836(82)90451-x. [DOI] [PubMed] [Google Scholar]
  10. Johnson M. K., Spiro T. G., Mortenson L. E. Resonance Raman and electron paramagnetic resonance studies on oxidized and ferricyanide-treated Clostridium pasteurianum ferredoxin. Vibrational assignments from 34S shifts and evidence for conversion of 4 to 3 iron-sulfur clusters via oxidative damage. Vibrational assignments from 34S shifts and evidence for conversion of 4 to 3 iron-sulfur clusters via oxidative damage. J Biol Chem. 1982 Mar 10;257(5):2447–2452. [PubMed] [Google Scholar]
  11. Kent T. A., Dreyer J. L., Kennedy M. C., Huynh B. H., Emptage M. H., Beinert H., Münck E. Mössbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1096–1100. doi: 10.1073/pnas.79.4.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kent T. A., Huynh B. H., Münck E. Iron-sulfur proteins: spin-coupling model for three-iron clusters. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6574–6576. doi: 10.1073/pnas.77.11.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kurtz D. M., Holm R. H., Ruzicka F. J., Beinert H., Coles C. J., Singer T. P. The high potential iron-sulfur cluster of aconitase is a binuclear iron-sulfur cluster. J Biol Chem. 1979 Jun 25;254(12):4967–4969. [PubMed] [Google Scholar]
  14. LUSTY C. J., MACHINIST J. M., SINGER T. P. STUDIES ON THE RESPIRATORY CHAIN-LINKED REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE. VII. "LABILE" SULFIDE GROUPS IN THE DEHYDROGENASE AND IN RELATED PROTEINS. J Biol Chem. 1965 Apr;240:1804–1810. [PubMed] [Google Scholar]
  15. MORRISON J. F. The activation of aconitase by ferrous ions and reducing agents. Biochem J. 1954 Dec;58(4):685–692. doi: 10.1042/bj0580685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moura J. J., Moura I., Kent T. A., Lipscomb J. D., Huynh B. H., LeGall J., Xavier A. V., Münck E. Interconversions of [3Fe-3S] and [4Fe-4S] clusters. Mössbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II. J Biol Chem. 1982 Jun 10;257(11):6259–6267. [PubMed] [Google Scholar]
  17. Paech C., Friend A., Singer T. P. Simplified isolation and molecular composition of NADH dehydrogenase of the respiratory chain. Biochem J. 1982 May 1;203(2):477–481. doi: 10.1042/bj2030477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ramsay R. R., Dreyer J. L., Schloss J. V., Jackson R. H., Coles C. J., Beinert H., Cleland W. W., Singer T. P. Relationship of the oxidation state of the iron-sulfur cluster of aconitase to activity and substrate binding. Biochemistry. 1981 Dec 22;20(26):7476–7482. doi: 10.1021/bi00529a023. [DOI] [PubMed] [Google Scholar]
  19. Rose I. A., O'Connell E. L. Mechanism of aconitase action. I. The hydrogen transfer reaction. J Biol Chem. 1967 Apr 25;242(8):1870–1879. [PubMed] [Google Scholar]
  20. Ruzicka F. J., Beinert H. A mitochondrial iron protein with properties of a high-potential iron-sulfur protein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):556–563. doi: 10.1016/s0006-291x(74)80456-0. [DOI] [PubMed] [Google Scholar]
  21. Ruzicka F. J., Beinert H. The soluble "high potential" type iron-sulfur protein from mitochondria is aconitase. J Biol Chem. 1978 Apr 25;253(8):2514–2517. [PubMed] [Google Scholar]
  22. Sakurai H., Lien S., San Pietro A. Determination of acid-labile sulfide and zero-valence sulfur in subchloroplast particles in the presence of sodium dodecyl sulfate. Anal Biochem. 1982 Jan 15;119(2):372–377. doi: 10.1016/0003-2697(82)90600-5. [DOI] [PubMed] [Google Scholar]
  23. Thomson A. J., Robinson A. E., Johnson M. K., Moura J. J., Moura I., Xavier A. V., Legall J. The three-iron cluster in a ferredoxin from Desulphovibrio gigas. A low-temperature magnetic circular dichroism study. Biochim Biophys Acta. 1981 Aug 28;670(1):93–100. doi: 10.1016/0005-2795(81)90053-2. [DOI] [PubMed] [Google Scholar]
  24. Villafranca J. J., Mildvan A. S. The mechanism of aconitase action. I. Preparation, physical properties of the enzyme, and activation by iron (II). J Biol Chem. 1971 Feb 10;246(3):772–779. [PubMed] [Google Scholar]
  25. Wahl R. C., Rajagopalan K. V. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem. 1982 Feb 10;257(3):1354–1359. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES