Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 May;80(9):2661–2665. doi: 10.1073/pnas.80.9.2661

Coordinate gene expression during somatic embryogenesis in carrots

Z R Sung 1,2, R Okimoto 1,2,*
PMCID: PMC393887  PMID: 16593311

Abstract

There are several biochemical differences between the callus and the embryos of carrot culture. Callus tissue produces callus-specific proteins and a conditioning factor that is necessary for the synthesis of callus-specific proteins. By contrast, embryos produce embryo-specific proteins [Sung, Z. R. & Okimoto, R. (1981) Proc. Natl. Acad. Sci. USA 78, 3683-3687] and develop the capability to inactivate cycloheximide [Sung, Z. R., Lazar, G. J. & Dudits, D. (1981) Plant Physiol. 68, 261-264]. A mutant, WCH105, that can inactivate cycloheximide in the callus as well as in the embryos produces the embryo-specific proteins instead of the callus-specific proteins and fails to produce the conditioning factor by the callus tissue. Callus tissues also produce a conditioning factor for callus growth. This factor is not the same as the conditioning factor for the synthesis of the callus-specific proteins, as WCH105 can grow as callus. The existence of WCH105 demonstrates that the callus-specific and embryo-specific traits are coordinately regulated, but in an opposite manner. A common mechanism apparently activates one set and inactivates the other set of functions. WCH105 seems to be impaired in this mechanism.

Keywords: coordinate regulation, carrot culture, two-dimensional gel electrophoresis, cycloheximide inactivation, cycloheximide-resistant mutant

Full text

PDF
2663

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann H., Gelehrter T. D., Doyle D. Dexamethasone regulates the program of secretory glycoprotein synthesis in hepatoma tissue culture cells. J Cell Biol. 1980 Apr;85(1):1–8. doi: 10.1083/jcb.85.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gard D. L., Bell P. B., Lazarides E. Coexistence of desmin and the fibroblastic intermediate filament subunit in muscle and nonmuscle cells: identification and comparative peptide analysis. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3894–3898. doi: 10.1073/pnas.76.8.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Halperin W., Jensen W. A. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res. 1967 May;18(3):428–443. doi: 10.1016/s0022-5320(67)80128-x. [DOI] [PubMed] [Google Scholar]
  4. Kamalay J. C., Goldberg R. B. Regulation of structural gene expression in tobacco. Cell. 1980 Apr;19(4):935–946. doi: 10.1016/0092-8674(80)90085-9. [DOI] [PubMed] [Google Scholar]
  5. Kauffman S. A., Shymko R. M., Trabert K. Control of sequential compartment formation in Drosophila. Science. 1978 Jan 20;199(4326):259–270. doi: 10.1126/science.413193. [DOI] [PubMed] [Google Scholar]
  6. Lazar G. B., Dudits D., Sung Z. R. Expression of cycloheximide resistance in carrot somatic hybrids and their segregants. Genetics. 1981 Jun;98(2):347–356. doi: 10.1093/genetics/98.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Montague M. J., Armstrong T. A., Jaworski E. G. Polyamine Metabolism in Embryogenic Cells of Daucus carota: II. Changes in Arginine Decarboxylase Activity. Plant Physiol. 1979 Feb;63(2):341–345. doi: 10.1104/pp.63.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. STEWARD F. C., MAPES M. O., KENT A. E., HOLSTEN R. D. GROWTH AND DEVELOPMENT OF CULTURED PLANT CELLS. Science. 1964 Jan 3;143(3601):20–27. doi: 10.1126/science.143.3601.20. [DOI] [PubMed] [Google Scholar]
  9. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  10. Sung Z. R. Cycloheximide resistance in carrot culture: a differentiated function. Plant Physiol. 1981 Jul;68(1):261–264. doi: 10.1104/pp.68.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sung Z. R. Mutagenesis of cultured plant cells. Genetics. 1976 Sep;84(1):51–57. doi: 10.1093/genetics/84.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sung Z. R., Okimoto R. Embryonic proteins in somatic embryos of carrot. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3683–3687. doi: 10.1073/pnas.78.6.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sung Z. R. Turbidimetric measurement of plant cell culture growth. Plant Physiol. 1976 Mar;57(3):460–462. doi: 10.1104/pp.57.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES