Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Feb 1;13(3):493–503. doi: 10.1002/j.1460-2075.1994.tb06287.x

Yeast chromosome III: new gene functions.

E V Koonin 1, P Bork 1, C Sander 1
PMCID: PMC394838  PMID: 8313894

Abstract

One year after the release of the sequence of yeast chromosome III, we have re-examined its open reading frames (ORFs) by computer methods. More than 61% of the 171 probable gene products have significant sequence similarities in the current databases; as many as 54% have already known functions or are related to functionally characterized proteins, allowing partial prediction of protein function, 11 percentage points more than reported a year ago; 19% are similar to proteins of known three-dimensional structure, allowing model building by homology. The most interesting new identifications include a sugar kinase distantly related to ribokinases, a phosphatidyl serine synthetase, a putative transcription regulator, a flavodoxin-like protein, and a zinc finger protein belonging to a distinct subfamily. Several ORFs have similarities to uncharacterized proteins, resulting in new families in search of a function'. About 54% of ORFs match sequences from other phyla, including numerous fragments in the database of expressed sequence tags (ESTs). Most significant similarities to ESTs are with proteins in conserved families widely represented in the databases. About 30% of ORFs contain one or more predicted transmembrane segments. The increase in the power of functional and structural prediction comes from improvements in sequence analysis and from richer databases and is expected to facilitate substantially the experimental effort in characterizing the function of new gene products.

Full text

PDF
493

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Amakasu H., Suzuki Y., Nishizawa M., Fukasawa T. Isolation and characterization of SGE1: a yeast gene that partially suppresses the gal11 mutation in multiple copies. Genetics. 1993 Jul;134(3):675–683. doi: 10.1093/genetics/134.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank, recent developments. Nucleic Acids Res. 1993 Jul 1;21(13):3093–3096. doi: 10.1093/nar/21.13.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res. 1993 Jul 1;21(13):3097–3103. doi: 10.1093/nar/21.13.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barker W. C., George D. G., Mewes H. W., Pfeiffer F., Tsugita A. The PIR-International databases. Nucleic Acids Res. 1993 Jul 1;21(13):3089–3092. doi: 10.1093/nar/21.13.3089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benson D., Lipman D. J., Ostell J. GenBank. Nucleic Acids Res. 1993 Jul 1;21(13):2963–2965. doi: 10.1093/nar/21.13.2963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boguski M. S., Lowe T. M., Tolstoshev C. M. dbEST--database for "expressed sequence tags". Nat Genet. 1993 Aug;4(4):332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
  8. Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins. 1993 Dec;17(4):363–374. doi: 10.1002/prot.340170405. [DOI] [PubMed] [Google Scholar]
  9. Bork P., Ouzounis C., Sander C., Scharf M., Schneider R., Sonnhammer E. Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III. Protein Sci. 1992 Dec;1(12):1677–1690. doi: 10.1002/pro.5560011216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bork P., Ouzounis C., Sander C., Scharf M., Schneider R., Sonnhammer E. What's in a genome? Nature. 1992 Jul 23;358(6384):287–287. doi: 10.1038/358287a0. [DOI] [PubMed] [Google Scholar]
  11. Bork P., Sander C., Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 1993 Jan;2(1):31–40. doi: 10.1002/pro.5560020104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Claverie J. M. Database of ancient sequences. Nature. 1993 Jul 1;364(6432):19–20. doi: 10.1038/364019b0. [DOI] [PubMed] [Google Scholar]
  13. Collart M. A., Struhl K. CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. EMBO J. 1993 Jan;12(1):177–186. doi: 10.1002/j.1460-2075.1993.tb05643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edman J. C., Goldstein A. L., Erbe J. G. Para-aminobenzoate synthase gene of Saccharomyces cerevisiae encodes a bifunctional enzyme. Yeast. 1993 Jun;9(6):669–675. doi: 10.1002/yea.320090613. [DOI] [PubMed] [Google Scholar]
  15. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  16. Franco L., Jiménez A., Demolder J., Molemans F., Fiers W., Contreras R. The nucleotide sequence of a third cyclophilin-homologous gene from Saccharomyces cerevisiae. Yeast. 1991 Dec;7(9):971–979. doi: 10.1002/yea.320070909. [DOI] [PubMed] [Google Scholar]
  17. Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
  18. Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
  19. Goffeau A., Nakai K., Slonimski P., Risler J. L., Slominski P [corrected to Slonimski P. ]. The membrane proteins encoded by yeast chromosome III genes. FEBS Lett. 1993 Jun 28;325(1-2):112–117. doi: 10.1016/0014-5793(93)81425-y. [DOI] [PubMed] [Google Scholar]
  20. Goffeau A., Slonimski P., Nakai K., Risler J. L. How many yeast genes code for membrane-spanning proteins? Yeast. 1993 Jul;9(7):691–702. doi: 10.1002/yea.320090703. [DOI] [PubMed] [Google Scholar]
  21. Gorbalenya A. E., Blinov V. M., Donchenko A. P., Koonin E. V. An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. J Mol Evol. 1989 Mar;28(3):256–268. doi: 10.1007/BF02102483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Green P., Lipman D., Hillier L., Waterston R., States D., Claverie J. M. Ancient conserved regions in new gene sequences and the protein databases. Science. 1993 Mar 19;259(5102):1711–1716. doi: 10.1126/science.8456298. [DOI] [PubMed] [Google Scholar]
  23. Gribskov M., McLachlan A. D., Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355–4358. doi: 10.1073/pnas.84.13.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  26. Hjelmstad R. H., Bell R. M. sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases in Saccharomyces cerevisiae. Nucleotide sequence of the EPT1 gene and comparison of the CPT1 and EPT1 gene products. J Biol Chem. 1991 Mar 15;266(8):5094–5103. [PubMed] [Google Scholar]
  27. Janitor M., Subík J. Molecular cloning of the PEL1 gene of Saccharomyces cerevisiae that is essential for the viability of petite mutants. Curr Genet. 1993 Oct;24(4):307–312. doi: 10.1007/BF00336781. [DOI] [PubMed] [Google Scholar]
  28. Karlin S., Altschul S. F. Applications and statistics for multiple high-scoring segments in molecular sequences. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5873–5877. doi: 10.1073/pnas.90.12.5873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kern L. The URK1 gene of Saccharomyces cerevisiae encoding uridine kinase. Nucleic Acids Res. 1990 Sep 11;18(17):5279–5279. doi: 10.1093/nar/18.17.5279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Koonin E. V. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol. 1993 Apr;74(Pt 4):733–740. doi: 10.1099/0022-1317-74-4-733. [DOI] [PubMed] [Google Scholar]
  31. Lalo D., Stettler S., Mariotte S., Slonimski P. P., Thuriaux P. Two yeast chromosomes are related by a fossil duplication of their centromeric regions. C R Acad Sci III. 1993;316(4):367–373. [PubMed] [Google Scholar]
  32. Mehta P. K., Christen P. Homology of pyridoxal-5'-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products. Eur J Biochem. 1993 Jan 15;211(1-2):373–376. doi: 10.1111/j.1432-1033.1993.tb19907.x. [DOI] [PubMed] [Google Scholar]
  33. Mohana Rao J. K., Argos P. A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta. 1986 Jan 30;869(2):197–214. doi: 10.1016/0167-4838(86)90295-5. [DOI] [PubMed] [Google Scholar]
  34. Moore J., Engelberg A., Bairoch A. Using PC/GENE for protein and nucleic acid analysis. Biotechniques. 1988 Jun;6(6):566–572. [PubMed] [Google Scholar]
  35. Navarre C., Ghislain M., Leterme S., Ferroud C., Dufour J. P., Goffeau A. Purification and complete sequence of a small proteolipid associated with the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem. 1992 Mar 25;267(9):6425–6428. [PubMed] [Google Scholar]
  36. Nikawa J., Kodaki T., Yamashita S. Primary structure and disruption of the phosphatidylinositol synthase gene of Saccharomyces cerevisiae. J Biol Chem. 1987 Apr 5;262(10):4876–4881. [PubMed] [Google Scholar]
  37. Oliver S. G., van der Aart Q. J., Agostoni-Carbone M. L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J. P., Benit P. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
  38. Ouzounis C., Sander C. Homology of the NifS family of proteins to a new class of pyridoxal phosphate-dependent enzymes. FEBS Lett. 1993 May 10;322(2):159–164. doi: 10.1016/0014-5793(93)81559-i. [DOI] [PubMed] [Google Scholar]
  39. Pang A. S., Nathoo S., Wong S. L. Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis. J Bacteriol. 1991 Jan;173(1):46–54. doi: 10.1128/jb.173.1.46-54.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rice C. M., Fuchs R., Higgins D. G., Stoehr P. J., Cameron G. N. The EMBL data library. Nucleic Acids Res. 1993 Jul 1;21(13):2967–2971. doi: 10.1093/nar/21.13.2967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rohde K., Bork P. A fast, sensitive pattern-matching approach for protein sequences. Comput Appl Biosci. 1993 Apr;9(2):183–189. doi: 10.1093/bioinformatics/9.2.183. [DOI] [PubMed] [Google Scholar]
  43. Rothe B., Rothe B., Roggentin P., Schauer R. The sialidase gene from Clostridium septicum: cloning, sequencing, expression in Escherichia coli and identification of conserved sequences in sialidases and other proteins. Mol Gen Genet. 1991 Apr;226(1-2):190–197. doi: 10.1007/BF00273603. [DOI] [PubMed] [Google Scholar]
  44. Sander C., Schneider R. The HSSP data base of protein structure-sequence alignments. Nucleic Acids Res. 1993 Jul 1;21(13):3105–3109. doi: 10.1093/nar/21.13.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Savakis C., Doelz R. Contamination of cDNA sequences in databases. Science. 1993 Mar 19;259(5102):1677–1678. doi: 10.1126/science.8456288. [DOI] [PubMed] [Google Scholar]
  46. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  47. Sor F., Chéret G., Fabre F., Faye G., Fukuhara H. Sequence of the HMR region on chromosome III of Saccharomyces cerevisiae. Yeast. 1992 Mar;8(3):215–222. doi: 10.1002/yea.320080307. [DOI] [PubMed] [Google Scholar]
  48. Tanaka S., Isono K. Correlation between observed transcripts and sequenced ORFs of chromosome III of Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Mar 11;21(5):1149–1153. doi: 10.1093/nar/21.5.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tomoyasu T., Yuki T., Morimura S., Mori H., Yamanaka K., Niki H., Hiraga S., Ogura T. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol. 1993 Mar;175(5):1344–1351. doi: 10.1128/jb.175.5.1344-1351.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Van Dyck E., Foury F., Stillman B., Brill S. J. A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J. 1992 Sep;11(9):3421–3430. doi: 10.1002/j.1460-2075.1992.tb05421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Van Dyck L., Purnelle B., Skala J., Goffeau A. An 11.4 kb DNA segment on the left arm of yeast chromosome II carries the carboxypeptidase Y sorting gene PEP1, as well as ACH1, FUS3 and a putative ARS. Yeast. 1992 Sep;8(9):769–776. doi: 10.1002/yea.320080910. [DOI] [PubMed] [Google Scholar]
  52. Voytas D. F., Boeke J. D. Yeast retrotransposon revealed. Nature. 1992 Aug 27;358(6389):717–717. doi: 10.1038/358717a0. [DOI] [PubMed] [Google Scholar]
  53. Wickner R. B., Fujimura T., Esteban R. Overview of double-stranded RNA replication in Saccharomyces cerevisiae. Basic Life Sci. 1986;40:149–163. doi: 10.1007/978-1-4684-5251-8_12. [DOI] [PubMed] [Google Scholar]
  54. Yang W., Ni L., Somerville R. L. A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5796–5800. doi: 10.1073/pnas.90.12.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zhu G., Muller E. G., Amacher S. L., Northrop J. L., Davis T. N. A dosage-dependent suppressor of a temperature-sensitive calmodulin mutant encodes a protein related to the fork head family of DNA-binding proteins. Mol Cell Biol. 1993 Mar;13(3):1779–1787. doi: 10.1128/mcb.13.3.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES