Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Feb 1;13(3):665–674. doi: 10.1002/j.1460-2075.1994.tb06305.x

S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process.

A Bottaro 1, R Lansford 1, L Xu 1, J Zhang 1, P Rothman 1, F W Alt 1
PMCID: PMC394857  PMID: 8313911

Abstract

Stimulation of B lymphocytes with a combination of lipopolysaccharide (LPS) and interleukin-4 (IL-4) induces germline transcription of and subsequent switching to the epsilon heavy chain constant region (C epsilon) gene. Mature germline C epsilon transcripts contain a non-coding exon (I epsilon exon) spliced to the C epsilon exons. To distinguish between the potential roles of germline transcription and those of germline transcripts in regulating the class switch process, we replaced the LPS- and IL-4-inducible I epsilon promoter and exon in ES cells with an LPS-inducible E mu enhancer/VH promoter expression cassette. Wildtype, heterozygous or homozygous mutant ES cells were injected into RAG-2 deficient blastocysts to generate somatic chimeras in which all B cells derived from ES cells. In contrast to normal B cells, heterozygous and homozygous mutant B cells had substantial transcription through the epsilon switch recombination region (S epsilon) following treatment with LPS alone and, under these conditions, both underwent low level switching (10- to 100-fold less than wildtype cells stimulated with LPS + IL-4) to IgE production. Heterozygous mutant cells underwent switching to IgE at essentially wildtype levels when stimulated with LPS and IL-4. However, homozygous mutant cells still showed extremely low levels of switching to IgE upon LPS and IL-4 stimulation. Analyses of hybridomas from heterozygous mutants indicated that the mutation is cis-acting and normal switching to other isotypes indicated that it is specific for IgE. Thus transcription per se generates low levels of class switch recombination in the absence of I region sequences. However, we demonstrate for the first time that, for optimal efficiency, the process requires the presence of the intact I region and/or I region promoter in cis, implicating factors beyond transcription through the S region in the regulation of class switching.

Full text

PDF
670

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Oltz E. M., Young F., Gorman J., Taccioli G., Chen J. VDJ recombination. Immunol Today. 1992 Aug;13(8):306–314. doi: 10.1016/0167-5699(92)90043-7. [DOI] [PubMed] [Google Scholar]
  2. Berton M. T., Uhr J. W., Vitetta E. S. Synthesis of germ-line gamma 1 immunoglobulin heavy-chain transcripts in resting B cells: induction by interleukin 4 and inhibition by interferon gamma. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2829–2833. doi: 10.1073/pnas.86.8.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blankenstein T., Winter E., Müller W. A retroviral expression vector containing murine immunoglobulin heavy chain promoter/enhancer. Nucleic Acids Res. 1988 Nov 25;16(22):10939–10939. doi: 10.1093/nar/16.22.10939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burstein H. J., Tepper R. I., Leder P., Abbas A. K. Humoral immune functions in IL-4 transgenic mice. J Immunol. 1991 Nov 1;147(9):2950–2956. [PubMed] [Google Scholar]
  5. Chen J., Lansford R., Stewart V., Young F., Alt F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4528–4532. doi: 10.1073/pnas.90.10.4528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chu C. C., Paul W. E., Max E. E. Quantitation of immunoglobulin mu-gamma 1 heavy chain switch region recombination by a digestion-circularization polymerase chain reaction method. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6978–6982. doi: 10.1073/pnas.89.15.6978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coffman R. L., Lebman D. A., Rothman P. Mechanism and regulation of immunoglobulin isotype switching. Adv Immunol. 1993;54:229–270. doi: 10.1016/s0065-2776(08)60536-2. [DOI] [PubMed] [Google Scholar]
  8. Coffman R. L., Lebman D. A., Shrader B. Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J Exp Med. 1989 Sep 1;170(3):1039–1044. doi: 10.1084/jem.170.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coffman R. L., Ohara J., Bond M. W., Carty J., Zlotnik A., Paul W. E. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol. 1986 Jun 15;136(12):4538–4541. [PubMed] [Google Scholar]
  10. Cory S., Jackson J., Adams J. M. Deletions in the constant region locus can account for switches in immunoglobulin heavy chain expression. Nature. 1980 Jun 12;285(5765):450–456. doi: 10.1038/285450a0. [DOI] [PubMed] [Google Scholar]
  11. Dildrop R., Ma A., Zimmerman K., Hsu E., Tesfaye A., DePinho R., Alt F. W. IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression. EMBO J. 1989 Apr;8(4):1121–1128. doi: 10.1002/j.1460-2075.1989.tb03482.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dröge P. Transcription-driven site-specific DNA recombination in vitro. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2759–2763. doi: 10.1073/pnas.90.7.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Esser C., Radbruch A. Immunoglobulin class switching: molecular and cellular analysis. Annu Rev Immunol. 1990;8:717–735. doi: 10.1146/annurev.iy.08.040190.003441. [DOI] [PubMed] [Google Scholar]
  14. Esser C., Radbruch A. Rapid induction of transcription of unrearranged S gamma 1 switch regions in activated murine B cells by interleukin 4. EMBO J. 1989 Feb;8(2):483–488. doi: 10.1002/j.1460-2075.1989.tb03401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finkelman F. D., Holmes J., Katona I. M., Urban J. F., Jr, Beckmann M. P., Park L. S., Schooley K. A., Coffman R. L., Mosmann T. R., Paul W. E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–333. doi: 10.1146/annurev.iy.08.040190.001511. [DOI] [PubMed] [Google Scholar]
  16. Gerondakis S. Structure and expression of murine germ-line immunoglobulin epsilon heavy chain transcripts induced by interleukin 4. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1581–1585. doi: 10.1073/pnas.87.4.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
  18. Gu H., Zou Y. R., Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell. 1993 Jun 18;73(6):1155–1164. doi: 10.1016/0092-8674(93)90644-6. [DOI] [PubMed] [Google Scholar]
  19. Hirano T., Miyajima H., Kitagawa H., Watanabe N., Azuma M., Taniguchi O., Hashimoto H., Hirose S., Yagita H., Furusawa S. Studies on murine IgE with monoclonal antibodies. I. Characterization of rat monoclonal anti-IgE antibodies and the use of these antibodies for determinations of serum IgE levels and for anaphylactic reactions. Int Arch Allergy Appl Immunol. 1988;85(1):47–54. [PubMed] [Google Scholar]
  20. Isakson P. C., Puré E., Vitetta E. S., Krammer P. H. T cell-derived B cell differentiation factor(s). Effect on the isotype switch of murine B cells. J Exp Med. 1982 Mar 1;155(3):734–748. doi: 10.1084/jem.155.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jung S., Rajewsky K., Radbruch A. Shutdown of class switch recombination by deletion of a switch region control element. Science. 1993 Feb 12;259(5097):984–987. doi: 10.1126/science.8438159. [DOI] [PubMed] [Google Scholar]
  22. Kataoka T., Kawakami T., Takahashi N., Honjo T. Rearrangement of immunoglobulin gamma 1-chain gene and mechanism for heavy-chain class switch. Proc Natl Acad Sci U S A. 1980 Feb;77(2):919–923. doi: 10.1073/pnas.77.2.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kearney J. F., Cooper M. D., Lawton A. R. B cell differentiation induced by lipopolysaccharide. IV. Development of immunoglobulin class restriction in precursors of IgG-synthesizing cells. J Immunol. 1976 Nov;117(5 Pt 1):1567–1572. [PubMed] [Google Scholar]
  24. Kühn R., Rajewsky K., Müller W. Generation and analysis of interleukin-4 deficient mice. Science. 1991 Nov 1;254(5032):707–710. doi: 10.1126/science.1948049. [DOI] [PubMed] [Google Scholar]
  25. Lebman D. A., Nomura D. Y., Coffman R. L., Lee F. D. Molecular characterization of germ-line immunoglobulin A transcripts produced during transforming growth factor type beta-induced isotype switching. Proc Natl Acad Sci U S A. 1990 May;87(10):3962–3966. doi: 10.1073/pnas.87.10.3962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lennon G. G., Perry R. P. C mu-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5'-nontranslatable exon. Nature. 1985 Dec 5;318(6045):475–478. doi: 10.1038/318475a0. [DOI] [PubMed] [Google Scholar]
  27. Lutzker S., Alt F. W. Structure and expression of germ line immunoglobulin gamma 2b transcripts. Mol Cell Biol. 1988 Apr;8(4):1849–1852. doi: 10.1128/mcb.8.4.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lutzker S., Rothman P., Pollock R., Coffman R., Alt F. W. Mitogen- and IL-4-regulated expression of germ-line Ig gamma 2b transcripts: evidence for directed heavy chain class switching. Cell. 1988 Apr 22;53(2):177–184. doi: 10.1016/0092-8674(88)90379-0. [DOI] [PubMed] [Google Scholar]
  29. Mansour S. L., Thomas K. R., Capecchi M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988 Nov 24;336(6197):348–352. doi: 10.1038/336348a0. [DOI] [PubMed] [Google Scholar]
  30. Mortensen R. M., Conner D. A., Chao S., Geisterfer-Lowrance A. A., Seidman J. G. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol. 1992 May;12(5):2391–2395. doi: 10.1128/mcb.12.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ott D. E., Alt F. W., Marcu K. B. Immunoglobulin heavy chain switch region recombination within a retroviral vector in murine pre-B cells. EMBO J. 1987 Mar;6(3):577–584. doi: 10.1002/j.1460-2075.1987.tb04793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rabbitts T. H., Forster A., Dunnick W., Bentley D. L. The role of gene deletion in the immunoglobulin heavy chain switch. Nature. 1980 Jan 24;283(5745):351–356. doi: 10.1038/283351a0. [DOI] [PubMed] [Google Scholar]
  33. Rothman P., Chen Y. Y., Lutzker S., Li S. C., Stewart V., Coffman R., Alt F. W. Structure and expression of germ line immunoglobulin heavy-chain epsilon transcripts: interleukin-4 plus lipopolysaccharide-directed switching to C epsilon. Mol Cell Biol. 1990 Apr;10(4):1672–1679. doi: 10.1128/mcb.10.4.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rothman P., Li S. C., Alt F. W. The molecular events in heavy chain class-switching. Semin Immunol. 1989 Sep;1(1):65–77. [PubMed] [Google Scholar]
  35. Rothman P., Li S. C., Gorham B., Glimcher L., Alt F., Boothby M. Identification of a conserved lipopolysaccharide-plus-interleukin-4-responsive element located at the promoter of germ line epsilon transcripts. Mol Cell Biol. 1991 Nov;11(11):5551–5561. doi: 10.1128/mcb.11.11.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rothman P., Lutzker S., Cook W., Coffman R., Alt F. W. Mitogen plus interleukin 4 induction of C epsilon transcripts in B lymphoid cells. J Exp Med. 1988 Dec 1;168(6):2385–2389. doi: 10.1084/jem.168.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rothman P., Lutzker S., Gorham B., Stewart V., Coffman R., Alt F. W. Structure and expression of germline immunoglobulin gamma 3 heavy chain gene transcripts: implications for mitogen and lymphokine directed class-switching. Int Immunol. 1990;2(7):621–627. doi: 10.1093/intimm/2.7.621. [DOI] [PubMed] [Google Scholar]
  38. Shinkai Y., Rathbun G., Lam K. P., Oltz E. M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A. M. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992 Mar 6;68(5):855–867. doi: 10.1016/0092-8674(92)90029-c. [DOI] [PubMed] [Google Scholar]
  39. Siebenkotten G., Esser C., Wabl M., Radbruch A. The murine IgG1/IgE class switch program. Eur J Immunol. 1992 Jul;22(7):1827–1834. doi: 10.1002/eji.1830220723. [DOI] [PubMed] [Google Scholar]
  40. Snapper C. M., Paul W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987 May 22;236(4804):944–947. doi: 10.1126/science.3107127. [DOI] [PubMed] [Google Scholar]
  41. Snapper C. M., Peschel C., Paul W. E. IFN-gamma stimulates IgG2a secretion by murine B cells stimulated with bacterial lipopolysaccharide. J Immunol. 1988 Apr 1;140(7):2121–2127. [PubMed] [Google Scholar]
  42. Stavnezer-Nordgren J., Sirlin S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 1986 Jan;5(1):95–102. doi: 10.1002/j.1460-2075.1986.tb04182.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stavnezer J., Radcliffe G., Lin Y. C., Nietupski J., Berggren L., Sitia R., Severinson E. Immunoglobulin heavy-chain switching may be directed by prior induction of transcripts from constant-region genes. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7704–7708. doi: 10.1073/pnas.85.20.7704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tanaka T., Chu C. C., Paul W. E. An antisense oligonucleotide complementary to a sequence in I gamma 2b increases gamma 2b germline transcripts, stimulates B cell DNA synthesis, and inhibits immunoglobulin secretion. J Exp Med. 1992 Feb 1;175(2):597–607. doi: 10.1084/jem.175.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tepper R. I., Levinson D. A., Stanger B. Z., Campos-Torres J., Abbas A. K., Leder P. IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell. 1990 Aug 10;62(3):457–467. doi: 10.1016/0092-8674(90)90011-3. [DOI] [PubMed] [Google Scholar]
  46. Urban J. F., Jr, Katona I. M., Paul W. E., Finkelman F. D. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5513–5517. doi: 10.1073/pnas.88.13.5513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wakatsuki Y., Strober W. Effect of downregulation of germline transcripts on immunoglobulin A isotype differentiation. J Exp Med. 1993 Jul 1;178(1):129–138. doi: 10.1084/jem.178.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang J. C., Caron P. R., Kim R. A. The role of DNA topoisomerases in recombination and genome stability: a double-edged sword? Cell. 1990 Aug 10;62(3):403–406. doi: 10.1016/0092-8674(90)90002-v. [DOI] [PubMed] [Google Scholar]
  49. Xu L., Gorham B., Li S. C., Bottaro A., Alt F. W., Rothman P. Replacement of germ-line epsilon promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3705–3709. doi: 10.1073/pnas.90.8.3705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yancopoulos G. D., DePinho R. A., Zimmerman K. A., Lutzker S. G., Rosenberg N., Alt F. W. Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 1986 Dec 1;5(12):3259–3266. doi: 10.1002/j.1460-2075.1986.tb04637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhang J., Bottaro A., Li S., Stewart V., Alt F. W. A selective defect in IgG2b switching as a result of targeted mutation of the I gamma 2b promoter and exon. EMBO J. 1993 Sep;12(9):3529–3537. doi: 10.1002/j.1460-2075.1993.tb06027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES