Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Aug;52(4):166–168. doi: 10.1136/mp.52.4.166

Cadherin adhesion in the intestinal crypt regulates morphogenesis, mitogenesis, motogenesis, and metaplasia formation.

I Perry 1, R Hardy 1, C Tselepis 1, J A Jankowski 1
PMCID: PMC395694  PMID: 10694934

Abstract

The topographical organisation of the epithelium lining mucous membranes has been an intense point of research. One of the fundamental biological issues underpinning this and associated issues relates to the role and regulation of epithelial adhesion molecules. Adhesion between individual cells allows an intact layer to be formed, which is selectively permeable. In addition, the orchestrated regulation of multiple adhesion molecules allows the gradual transition from basal secretory cells to apical absorptive cells in the crypt-villus gradient. Moreover, it is becoming clear that no one class of adhesion molecule can sufficiently govern crypt architecture; however, the main cell-cell adhesion molecules are the cadherins and the related desmosomal cadherins. These latter molecules interact with the catenins, which bind directly or indirectly with cytoskeletal molecules such as Rho and Rac. In addition, other complex glycoproteins, such as the carcinoembryonic antigens, might contribute to adhesion, although their mechanisms of function are distinctly different. Integrins on the basal aspect of the cells also signal important morphoregulatory signals as a result of their binding to the extracellular maxtrix. The disruption of these physiological processes also provides a necessary and, in some cases, sufficient molecular mechanism for cancer invasion and metastasis, such as occurs in E-cadherin mutation positive familial gastric cancer.

Full Text

The Full Text of this article is available as a PDF (81.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjerknes M., Cheng H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology. 1999 Jan;116(1):7–14. doi: 10.1016/s0016-5085(99)70222-2. [DOI] [PubMed] [Google Scholar]
  2. Braga V. M., Del Maschio A., Machesky L., Dejana E. Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell. 1999 Jan;10(1):9–22. doi: 10.1091/mbc.10.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Danjo Y., Gipson I. K. Actin 'purse string' filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement. J Cell Sci. 1998 Nov;111(Pt 22):3323–3332. doi: 10.1242/jcs.111.22.3323. [DOI] [PubMed] [Google Scholar]
  4. Faraldo M. L., Rodrigo I., Behrens J., Birchmeier W., Cano A. Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol Carcinog. 1997 Sep;20(1):33–47. doi: 10.1002/(sici)1098-2744(199709)20:1<33::aid-mc5>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  5. Goldblum J. R., Vicari J. J., Falk G. W., Rice T. W., Peek R. M., Easley K., Richter J. E. Inflammation and intestinal metaplasia of the gastric cardia: the role of gastroesophageal reflux and H. pylori infection. Gastroenterology. 1998 Apr;114(4):633–639. doi: 10.1016/s0016-5085(98)70576-1. [DOI] [PubMed] [Google Scholar]
  6. Hart M. J., de los Santos R., Albert I. N., Rubinfeld B., Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998 May 7;8(10):573–581. doi: 10.1016/s0960-9822(98)70226-x. [DOI] [PubMed] [Google Scholar]
  7. Hermiston M. L., Gordon J. I. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science. 1995 Nov 17;270(5239):1203–1207. doi: 10.1126/science.270.5239.1203. [DOI] [PubMed] [Google Scholar]
  8. Hermiston M. L., Wong M. H., Gordon J. I. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev. 1996 Apr 15;10(8):985–996. doi: 10.1101/gad.10.8.985. [DOI] [PubMed] [Google Scholar]
  9. Hugot J. P., Laurent-Puig P., Gower-Rousseau C., Olson J. M., Lee J. C., Beaugerie L., Naom I., Dupas J. L., Van Gossum A., Orholm M. Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature. 1996 Feb 29;379(6568):821–823. doi: 10.1038/379821a0. [DOI] [PubMed] [Google Scholar]
  10. Jankowski J. A., Bedford F. K., Boulton R. A., Cruickshank N., Hall C., Elder J., Allan R., Forbes A., Kim Y. S., Wright N. A. Alterations in classical cadherins associated with progression in ulcerative and Crohn's colitis. Lab Invest. 1998 Sep;78(9):1155–1167. [PubMed] [Google Scholar]
  11. Jarrard D. F., Paul R., van Bokhoven A., Nguyen S. H., Bova G. S., Wheelock M. J., Johnson K. R., Schalken J., Bussemakers M., Isaacs W. B. P-Cadherin is a basal cell-specific epithelial marker that is not expressed in prostate cancer. Clin Cancer Res. 1997 Nov;3(11):2121–2128. [PubMed] [Google Scholar]
  12. Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997 Mar 21;275(5307):1784–1787. doi: 10.1126/science.275.5307.1784. [DOI] [PubMed] [Google Scholar]
  13. Kuroda S., Fukata M., Nakagawa M., Fujii K., Nakamura T., Ookubo T., Izawa I., Nagase T., Nomura N., Tani H. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science. 1998 Aug 7;281(5378):832–835. doi: 10.1126/science.281.5378.832. [DOI] [PubMed] [Google Scholar]
  14. Madara J. L., Parkos C., Colgan S., Nusrat A., Atisook K., Kaoutzani P. The movement of solutes and cells across tight junctions. Ann N Y Acad Sci. 1992;664:47–60. doi: 10.1111/j.1749-6632.1992.tb39748.x. [DOI] [PubMed] [Google Scholar]
  15. Merrett M. N. Ileal pouches: adaptation and inflammation. Baillieres Clin Gastroenterol. 1997 Mar;11(1):175–193. doi: 10.1016/s0950-3528(97)90060-9. [DOI] [PubMed] [Google Scholar]
  16. Novelli M. R., Williamson J. A., Tomlinson I. P., Elia G., Hodgson S. V., Talbot I. C., Bodmer W. F., Wright N. A. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science. 1996 May 24;272(5265):1187–1190. doi: 10.1126/science.272.5265.1187. [DOI] [PubMed] [Google Scholar]
  17. Oberg S., Peters J. H., DeMeester T. R., Chandrasoma P., Hagen J. A., Ireland A. P., Ritter M. P., Mason R. J., Crookes P., Bremner C. G. Inflammation and specialized intestinal metaplasia of cardiac mucosa is a manifestation of gastroesophageal reflux disease. Ann Surg. 1997 Oct;226(4):522–532. doi: 10.1097/00000658-199710000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Potten C. S. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci. 1998 Jun 29;353(1370):821–830. doi: 10.1098/rstb.1998.0246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richards F. M., McKee S. A., Rajpar M. H., Cole T. R., Evans D. G., Jankowski J. A., McKeown C., Sanders D. S., Maher E. R. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Hum Mol Genet. 1999 Apr;8(4):607–610. doi: 10.1093/hmg/8.4.607. [DOI] [PubMed] [Google Scholar]
  20. Sadot E., Simcha I., Shtutman M., Ben-Ze'ev A., Geiger B. Inhibition of beta-catenin-mediated transactivation by cadherin derivatives. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15339–15344. doi: 10.1073/pnas.95.26.15339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scheid M. P., Duronio V. Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7439–7444. doi: 10.1073/pnas.95.13.7439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Simcha I., Shtutman M., Salomon D., Zhurinsky J., Sadot E., Geiger B., Ben-Ze'ev A. Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol. 1998 Jun 15;141(6):1433–1448. doi: 10.1083/jcb.141.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sokoloff M. H., Tso C. L., Kaboo R., Taneja S., Pang S., deKernion J. B., Belldegrun A. S. In vitro modulation of tumor progression-associated properties of hormone refractory prostate carcinoma cell lines by cytokines. Cancer. 1996 May 1;77(9):1862–1872. doi: 10.1002/(SICI)1097-0142(19960501)77:9<1862::AID-CNCR16>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  24. Söderholm J. D., Olaison G., Lindberg E., Hannestad U., Vindels A., Tysk C., Järnerot G., Sjödahl R. Different intestinal permeability patterns in relatives and spouses of patients with Crohn's disease: an inherited defect in mucosal defence? Gut. 1999 Jan;44(1):96–100. doi: 10.1136/gut.44.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wong M. H., Rubinfeld B., Gordon J. I. Effects of forced expression of an NH2-terminal truncated beta-Catenin on mouse intestinal epithelial homeostasis. J Cell Biol. 1998 May 4;141(3):765–777. doi: 10.1083/jcb.141.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wójciak-Stothard B., Entwistle A., Garg R., Ridley A. J. Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol. 1998 Jul;176(1):150–165. doi: 10.1002/(SICI)1097-4652(199807)176:1<150::AID-JCP17>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  27. Yap A. S., Niessen C. M., Gumbiner B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol. 1998 May 4;141(3):779–789. doi: 10.1083/jcb.141.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Es J. H., Kirkpatrick C., van de Wetering M., Molenaar M., Miles A., Kuipers J., Destrée O., Peifer M., Clevers H. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr Biol. 1999 Jan 28;9(2):105–108. doi: 10.1016/s0960-9822(99)80024-4. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES