Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Nov;44(11):1488-1491, 1493, 1495, 1497-1498. doi: 10.1104/pp.44.11.1488

Enzymes Associated with Protein Bodies Isolated from Ungerminated Barley Seeds

Robert L Ory a,1, Knud W Henningsen b
PMCID: PMC396295  PMID: 5397495

Abstract

Protein bodies were isolated intact from dormant barley seeds, Hordeum vulgare, var. Kenia, by a combination of buffer extractions and centrifugations over a sucrose gradient. Examination of the protein bodies pellet in the electron microscope shows 2 types of protein bodies in a wide variation of sizes. The majority of them stain evenly with osmium, are contained within a single membrane, and have no other structural components. The other type, mostly the larger particles, has a fine structure of orderly dark and light-stained layers attached to the protein bodies. Two acid hydrolases are associated with these particles: acid phosphatase activity, specific for sodium phytate but inactive on β-glycerol phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and adenosine triphosphate; and acid protease activity.

Full text

PDF
1497

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Lui N. S., Altschul A. M. Isolation of globoids from cottonseed aleurone grain. Arch Biochem Biophys. 1967 Sep;121(3):678–684. doi: 10.1016/0003-9861(67)90053-7. [DOI] [PubMed] [Google Scholar]
  3. MORTON R. K., RAISON J. K. A COMPLETE INTRACELLULAR UNIT FOR INCORPORATION OF AMINO-ACID INTO STORAGE PROTEIN UTILIZING ADENOSINE TRIPHOSPHATE GENERATED FROM PHYTATE. Nature. 1963 Nov 2;200:429–433. doi: 10.1038/200429a0. [DOI] [PubMed] [Google Scholar]
  4. Mitsuda H., Murakami K., Kusano T., Yasumoto K. Fine structure of protein bodies isolated from rice endosperm. Arch Biochem Biophys. 1969 Mar;130(1):678–680. doi: 10.1016/0003-9861(69)90087-3. [DOI] [PubMed] [Google Scholar]
  5. Ory R. L., Yatsu L. Y., Kircher H. W. Association of lipase activity with the spherosomes of Ricinus communis. Arch Biochem Biophys. 1968 Feb;123(2):255–264. doi: 10.1016/0003-9861(68)90132-x. [DOI] [PubMed] [Google Scholar]
  6. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  7. St Angelo A. J., Yatsu L. Y., Altschul A. M. Isolation of edestin from aleurone grains of Cannabis sativa. Arch Biochem Biophys. 1968 Mar 20;124(1):199–205. doi: 10.1016/0003-9861(68)90320-2. [DOI] [PubMed] [Google Scholar]
  8. Tombs M. P. Protein bodies of the soybean. Plant Physiol. 1967 Jun;42(6):797–813. doi: 10.1104/pp.42.6.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Yatsu L. Y., Jacks T. J. Association of lysosomal activity with aleurone grains in plant seeds. Arch Biochem Biophys. 1968 Mar 20;124(1):466–471. doi: 10.1016/0003-9861(68)90354-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES