Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Nov;44(11):1533–1537. doi: 10.1104/pp.44.11.1533

The Formation of Ribulose Diphosphate Carboxylase Protein during Chloroplast Development in Barley 1

C Gamini Kannangara a
PMCID: PMC396301  PMID: 16657236

Abstract

Ribulose 1,5-diphosphate carboxylase is synthesized in barley leaves growing in the dark. Upon illumination there is a marked increase in the rate of synthesis of the enzyme. The specific activity of the enzyme expressed as cpm incorporated into phosphoglyceric acid per μg of fraction I protein, after isolation shows no change either during dark growth or greening. During early stages of illumination of 7 day dark grown leaves with 320 foot-candles the enzymic activity in the water soluble protein fraction of the leaf shows a short term decline after 15 min which lasts for 30 min. Leaves greening at 2 foot-candles show a similar decline which is shifted to a time between the fourth and eighth hr after the onset of illumination.

Full text

PDF
1536

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggins J., Park R. B. CO(2) Assimilation by Etiolated Hordeum vulgare Seedlings during the Onset of Photosynthesis. Plant Physiol. 1966 Jan;41(1):115–118. doi: 10.1104/pp.41.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen S., McMahon D., Bogorad L. Early effects of illumination on the activity of some photosynthetic enzymes. Plant Physiol. 1967 Jan;42(1):1–5. doi: 10.1104/pp.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DE DEKEN-GRENSON M. Grana formation and synthesis of chloroplastic proteins induced by light in portions of etiolated leaves. Biochim Biophys Acta. 1954 Jun;14(2):203–211. doi: 10.1016/0006-3002(54)90159-6. [DOI] [PubMed] [Google Scholar]
  4. Filner B., Klein A. O. Changes in enzymatic activities in etiolated bean seedling leaves after a brief illumination. Plant Physiol. 1968 Oct;43(10):1587–1596. doi: 10.1104/pp.43.10.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heber U., Pon N. G., Heber M. Localization of Carboxydismutase & Triosephosphate Dehydrogenases in Chloroplasts. Plant Physiol. 1963 May;38(3):355–360. doi: 10.1104/pp.38.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. LYTTLETON J. W., TS'O P. O. The localization of fraction I protein of green leaves in the chloroplasts. Arch Biochem Biophys. 1958 Jan;73(1):120–126. doi: 10.1016/0003-9861(58)90246-7. [DOI] [PubMed] [Google Scholar]
  8. MEGO J. L., JAGENDORF A. T. Effect of light on growth of Black Valentine bean plastids. Biochim Biophys Acta. 1961 Oct 28;53:237–254. doi: 10.1016/0006-3002(61)90437-1. [DOI] [PubMed] [Google Scholar]
  9. Margulies M. M. Effect of Chloramphenicol on Formation of Chloroplast Structure and Protein During Greening of Etiolated Leaves of Phaseolus vulgaris. Plant Physiol. 1966 Jun;41(6):992–1003. doi: 10.1104/pp.41.6.992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Margulies M. M. Effect of Chloramphenicol on Light-Dependent Synthesis of Proteins and Enzymes of Leaves and Chloroplasts of Phaseolus vulgaris. Plant Physiol. 1964 Jul;39(4):579–585. doi: 10.1104/pp.39.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith J. H., French C. S., Koski V. M. The Hill Reaction: Development of Chloroplast Activity During Greening of Etiolated Barley Leaves. Plant Physiol. 1952 Jan;27(1):212–213. doi: 10.1104/pp.27.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. TROWN P. W. AN IMPROVED METHOD FOR THE ISOLATION OF CARBOXYDISMUTASE. PROBABLE IDENTITY WITH FRACTION I PROTEIN AND THE PROTEIN MOIETY OF PROTOCHLOROPHYLL HOLOCHROME. Biochemistry. 1965 May;4:908–918. doi: 10.1021/bi00881a018. [DOI] [PubMed] [Google Scholar]
  13. Tolbert N. E., Gailey F. B. Carbon Dioxide Fixation by Etiolated Plants after Exposure to White Light. Plant Physiol. 1955 Nov;30(6):491–499. doi: 10.1104/pp.30.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WEISSBACH A., HORECKER B. L., HURWITZ J. The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem. 1956 Feb;218(2):795–810. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES