Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Dec;46(6):825–830. doi: 10.1104/pp.46.6.825

Buoyant Density Studies of Chloroplast and Nuclear Deoxyribonucleic Acid from Control and 3-Amino-1,2,4-Triazole-treated Wheat Seedlings, Triticum vulgare1

Paul G Bartels a, Alison Hyde a
PMCID: PMC396691  PMID: 5500210

Abstract

The isolation of chloroplast and nuclear DNA from dark- and light-grown, control- and 3-amino-1,2,4-triazole-treated wheat seedlings, Triticum vulgare, is described. Contrary to a previous report, we found that chloroplast and nuclear DNA had similar buoyant densities (1.702 grams per cubic centimeter) and that they could not be resolved by buoyant density centrifugation in CsCl. Difference in renaturation behavior of the chloroplast and nuclear DNA was used as the criterion for distinguishing one from the other. Only chloroplast DNA readily renatured whereas nuclear DNA renatured only slightly. Light-grown, 3-amino-1,2,4-triazole-treated plants were found to lack detectable quantities of chloroplast DNA whereas treated, dark-grown plants contained plastid DNA. We suggest that 3-amino-1,2,4-triazole affects the accumulation of chloroplast DNA by inhibiting the formation of chloroplast membranes, enzymes, and pigments.

Full text

PDF
830

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bard S. A., Gordon M. P. Studies on spinach chloroplast and nuclear DNA using large-scale tissue preparations. Plant Physiol. 1969 Mar;44(3):377–384. doi: 10.1104/pp.44.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartels P. G., Matsuda K., Siegel A., Weier T. E. Chloroplastic ribosome formation: inhibition by 3-amino-1,2,4-triazole. Plant Physiol. 1967 May;42(5):736–741. doi: 10.1104/pp.42.5.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bisalputra T., Burton H. The ultrastructure of chloroplast of a brown alga Sphacelaria sp. II. Association between the chloroplast DNA and the photosynthetic lamellae. J Ultrastruct Res. 1969 Nov;29(3):224–235. doi: 10.1016/s0022-5320(69)90103-8. [DOI] [PubMed] [Google Scholar]
  4. CHUN E. H., VAUGHAN M. H., Jr, RICH A. THE ISOLATION AND CHARACTERIZATION OF DNA ASSOCIATED WITH CHLOROPLAST PREPARATIONS. J Mol Biol. 1963 Aug;7:130–141. doi: 10.1016/s0022-2836(63)80042-x. [DOI] [PubMed] [Google Scholar]
  5. Green B. R., Gordon M. P. The satellite DNA's of some higher plants. Biochim Biophys Acta. 1967 Sep 26;145(2):378–390. doi: 10.1016/0005-2787(67)90056-1. [DOI] [PubMed] [Google Scholar]
  6. Hotta Y., Bassel A., Stern H. Nuclear DNA and cytoplasmic DNA from tissues of higher plants. J Cell Biol. 1965 Dec;27(3):451–457. doi: 10.1083/jcb.27.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacobson A. B. A procedure for isolation of proplastids from etiolated maize leaves. J Cell Biol. 1968 Jul;38(1):238–244. doi: 10.1083/jcb.38.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Janowski M. Synthèse chloroplastique d'acides nucléiques chez Acetabularia mediterranea. Biochim Biophys Acta. 1965 Jul 15;103(3):399–408. [PubMed] [Google Scholar]
  9. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KISLEV N., SWIFT H., BOGORAD L. NUCLEIC ACIDS OF CHLOROPLASTS AND MITOCHONDRIA IN SWISS CHARD. J Cell Biol. 1965 May;25:327–344. doi: 10.1083/jcb.25.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kung S. D., Williams J. P. Chloroplast DNA from broad bean. Biochim Biophys Acta. 1969 Dec 16;195(2):434–445. doi: 10.1016/0005-2787(69)90650-9. [DOI] [PubMed] [Google Scholar]
  12. Leff J., Krinsky N. I. A mutagenic effect of visible light mediated by endogenous pigments in Euglena gracilis. Science. 1967 Dec 8;158(3806):1332–1334. doi: 10.1126/science.158.3806.1332. [DOI] [PubMed] [Google Scholar]
  13. Mache R., Waygood E. R. Characterization of DNA in wheat chloroplasts isolated by a new "laceration technique". FEBS Lett. 1969 Apr;3(2):89–92. doi: 10.1016/0014-5793(69)80104-3. [DOI] [PubMed] [Google Scholar]
  14. Nieman R. H., Poulsen L. L. Spectrophotometric Estimation of Nucleic Acid of Plant Leaves. Plant Physiol. 1963 Jan;38(1):31–35. doi: 10.1104/pp.38.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shipp W. S., Kieras F. J., Haselkorn R. DNA associated with tobacco chloroplasts. Proc Natl Acad Sci U S A. 1965 Jul;54(1):207–213. doi: 10.1073/pnas.54.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  17. Tewari K. K., Wildman S. G. Chloroplast DNA from tobacco leaves. Science. 1966 Sep 9;153(3741):1269–1271. doi: 10.1126/science.153.3741.1269. [DOI] [PubMed] [Google Scholar]
  18. Wells R., Birnstiel M. Kinetic complexity of chloroplastal deoxyribonucleic acid and mitochondrial deoxyribonucleic acid from higher plants. Biochem J. 1969 May;112(5):777–786. doi: 10.1042/bj1120777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Whitfeld P. R., Spencer D. Buoyant density of tobacco and spinach chloroplast DNA. Biochim Biophys Acta. 1968 Apr 22;157(2):333–343. doi: 10.1016/0005-2787(68)90087-7. [DOI] [PubMed] [Google Scholar]
  20. Woodcock C. L., Fernández-Morán H. Electron microscopy of DNA conformations in spinach chloroplasts. J Mol Biol. 1968 Feb 14;31(3):627–631. doi: 10.1016/0022-2836(68)90435-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES