Abstract
Malformin completely inhibited Ethrel-induced swelling and fresh weight increase on the basal stem portion of Phaseolus vulgaris L. cuttings, but markedly potentiated Ethrel- or ethylene-induced abscission. With regard to abscission, malformin reacted synergistically with ethylene and dark aging, and in a manner which appeared to differ from that of ethylene and dark aging. The numerous effects of malformin on plant growth and development cannot be explained in simple terms of enhanced ethylene production.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURG S. P., BURG E. A. ETHYLENE ACTION AND THE RIPENING OF FRUITS. Science. 1965 May 28;148(3674):1190–1196. doi: 10.1126/science.148.3674.1190. [DOI] [PubMed] [Google Scholar]
- Burg S. P. Ethylene, plant senescence and abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1503–1511. [PMC free article] [PubMed] [Google Scholar]
- Curtis R. W. Mediation of a plant response to malformin by ethylene. Plant Physiol. 1968 Jan;43(1):76–80. doi: 10.1104/pp.43.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holm R. E., O'brien T. J., Key J. L., Cherry J. H. The Influence of Auxin and Ethylene on Chromatin-directed Ribonucleic Acid Synthesis in Soybean Hypocotyl. Plant Physiol. 1970 Jan;45(1):41–45. doi: 10.1104/pp.45.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W. Stimulation of ethylene evolution and abscission in cotton by 2-chloroethanephosphonic Acid. Plant Physiol. 1969 Mar;44(3):337–341. doi: 10.1104/pp.44.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubinstein B., Leopold A. C. Analysis of the Auxin Control of Bean Leaf Abscission. Plant Physiol. 1963 May;38(3):262–267. doi: 10.1104/pp.38.3.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi N., Curtis R. W. Isolation & characterization of malformin. Plant Physiol. 1961 Jan;36(1):30–36. doi: 10.1104/pp.36.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]