Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Jul;48(1):1–4. doi: 10.1104/pp.48.1.1

Inhibition of Ethylene Production by Rhizobitoxine

L D Owens a, M Lieberman a, A Kunishi a
PMCID: PMC396788  PMID: 16657720

Abstract

Rhizobitoxine, an inhibitor of methionine biosynthesis in Salmonella typhimurium, inhibited ethylene production about 75% in light-grown sorghum seedlings and in senescent apple tissue. Ethylene production stimulated by indoleacetic acid and kinetin in sorghum was similarly inhibited. With both apple and sorghum, the inhibition could only be partially relieved by additions of methionine. A methionine analogue, α-keto-γ-methylthiobutyric acid, which has been suggested as an intermediate between methionine and ethylene, had no effect on the inhibition.

Incorporation of 14C from added methionine-14C into ethylene was curtailed by rhizobitoxine to about the same extent as was ethylene production. These results suggest that rhizobitoxine interferes with ethylene biosynthesis by blocking the conversion of methionine to ethylene and not indirectly by inhibiting the biosynthesis of methionine. Ethylene production by Penicillium digitatum, a fungus which produces ethylene via pathways not utilizing methionine as a precursor, was not affected by rhizobitoxine.

Full text

PDF
3

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baur A. H., Yang S. F. Precursors of ethylene. Plant Physiol. 1969 Sep;44(9):1347–1349. doi: 10.1104/pp.44.9.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burg S. P., Clagett C. O. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun. 1967 Apr 20;27(2):125–130. doi: 10.1016/s0006-291x(67)80050-0. [DOI] [PubMed] [Google Scholar]
  3. Fuchs Y., Lieberman M. Effects of Kinetin, IAA, and Gibberellin on Ethylene Production, and Their Interactions in Growth of Seedlings. Plant Physiol. 1968 Dec;43(12):2029–2036. doi: 10.1104/pp.43.12.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giovanelli J., Owens L. D., Mudd S. H. Mechanism of inhibition of spinach beta-cystathionase by rhizobitoxine. Biochim Biophys Acta. 1971 Mar 10;227(3):671–684. doi: 10.1016/0005-2744(71)90016-7. [DOI] [PubMed] [Google Scholar]
  5. Jacobsen D. W., Wang C. H. The biogenesis of ethylene in penicillium digitatum. Plant Physiol. 1968 Dec;43(12):1959–1966. doi: 10.1104/pp.43.12.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lieberman M., Kunishi A. T. Ethylene production from methionine. Biochem J. 1965 Nov;97(2):449–459. doi: 10.1042/bj0970449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lieberman M., Kunishi A. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 1966 Mar;41(3):376–382. doi: 10.1104/pp.41.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mapson L. W., March J. F., Wardale D. A. Biosynthesis of ethylene. 4-methylmercapto-2-oxobutyric acid: an intermediate in the formation from methionine. Biochem J. 1969 Dec;115(4):653–661. doi: 10.1042/bj1150653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Owens L. D., Guggenheim S., Hilton J. L. Rhizobium-synthesized phytototoxin: an inhibitor of beta-cystathionase in Salmonella typhimurium. Biochim Biophys Acta. 1968 May;158(2):219–225. doi: 10.1016/0304-4165(68)90134-7. [DOI] [PubMed] [Google Scholar]
  10. Owens L. D., Wright D. A. Production of the Soybean-Chlorosis Toxin by Rhizobium japonicum in Pure Culture. Plant Physiol. 1965 Sep;40(5):931–933. doi: 10.1104/pp.40.5.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Owens L. D., Wright D. A. Rhizobial-Induced Chlorosis in Soybeans: Isolation, Production in Nodules, and Varietal Specificity of the Toxin. Plant Physiol. 1965 Sep;40(5):927–930. doi: 10.1104/pp.40.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES