Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Oct;48(4):383–388. doi: 10.1104/pp.48.4.383

Relationship between Photoconvertible and Nonphotoconvertible Protochlorophyllides 1

Albert E Murray a,2, Attila O Klein a
PMCID: PMC396872  PMID: 16657804

Abstract

Two forms of protochlorophyllide are found in dark-grown bean (Phaseolus vulgaris, var. Black Velentine) leaves, one (protochlorophyllide650) which is directly photoconvertible to chlorophyllide and another (protochlorophyllide632) which is not. Dark-grown leaves placed in solutions of δ-aminolevulinic acid accumulate protochlorophyllide632. Protochlorophyllide650 and protochlorophyllide632 can be partially separated on sucrose density gradients. A nitrogen atmosphere blocks chlorophyll synthesis in light or the regeneration of protochlorophyllide650 in the dark, even in the presence of excess δ-aminolevulinic acid, except when a stockpile of protochlorophyllide632 is present in the leaf. Under the latter conditions chlorophyll synthesis or protochlorophyllide650 regeneration is accompanied by a decrease in protochlorophyllide632. These experiments suggest that protochlorophyllide632 may be converted to protochlorophyllide650.

Cycloheximide inhibited greening only after an “action-dependent” delay, requiring a predictable minimal period of illumination. This inhibition could be relieved for a time by feeding δ-aminolevulinic acid.

Full text

PDF
383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie D. S., Stuchell R. N. Studies on the induction of hepatic delta-aminolevulinic acid synthetase in rat liver mitochondria. Arch Biochem Biophys. 1970 Aug;139(2):291–297. doi: 10.1016/0003-9861(70)90480-7. [DOI] [PubMed] [Google Scholar]
  2. Gassman M., Bogorad L. Control of chlorophyll production in rapidly greening bean leaves. Plant Physiol. 1967 Jun;42(6):774–780. doi: 10.1104/pp.42.6.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gassman M., Bogorad L. Studies on the regeneration of protochlorophyllide after brief illumination of etiolated bean leaves. Plant Physiol. 1967 Jun;42(6):781–784. doi: 10.1104/pp.42.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Granick S., Gassman M. Rapid regeneration of protochlorophyllide(650). Plant Physiol. 1970 Feb;45(2):201–205. doi: 10.1104/pp.45.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kirk J. T., Allen R. L. Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun. 1965 Dec 21;21(6):523–530. doi: 10.1016/0006-291x(65)90516-4. [DOI] [PubMed] [Google Scholar]
  6. Nadler K., Granick S. Controls on chlorophyll synthesis in barley. Plant Physiol. 1970 Aug;46(2):240–246. doi: 10.1104/pp.46.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schopfer P., Siegelman H. W. Purification of protochlorophyllide holochrome. Plant Physiol. 1968 Jun;43(6):990–996. doi: 10.1104/pp.43.6.990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES