Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Dec;48(6):765–769. doi: 10.1104/pp.48.6.765

Adenosine Diphosphoglucose-Starch Glucosyltransferases from Developing Kernels of Waxy Maize

J L Ozbun a,1, J S Hawker a,2, Jack Preiss a
PMCID: PMC396944  PMID: 16657876

Abstract

Two adenosine diphosphoglucose: α-1,4-glucan α-4-glucosyl-transferases were extracted from kernels of waxy maize harvested 22 days after pollination and separated by gradient elution from a diethylaminoethyl-cellulose column. Both fractions could utilize amylopectin, amylose, glycogen, maltotriose and maltose as primers. The rate of glucose transfer from adenosine diphosphoglucose to rabbit liver glycogen of fraction II was 78% of the rate of glucose transfer to amylopectin, but with fraction I the rate of transfer of glucose to rabbit liver glycogen was 380% of that observed to amylopectin. Glucan synthesis in the absence of added primer was found in fraction I in the presence of 0.5 m sodium citrate and bovine serum albumin. The unprimed product was a methanol-precipitable glucan with principally α-1,4 linkages and some α-1,6 linkages, and its iodine spectrum was similar to that of amylopectin.

Full text

PDF
766

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Creech R G. Genetic Control of Carbohydrate Synthesis in Maize Endosperm. Genetics. 1965 Dec;52(6):1175–1186. doi: 10.1093/genetics/52.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ghosh H. P., Preiss J. Biosynthesis of starch in spinach chloroplasts. Biochemistry. 1965 Jul;4(7):1354–1361. doi: 10.1021/bi00883a020. [DOI] [PubMed] [Google Scholar]
  3. Gunja-Smith Z., Marshall J. J., Smith E. E., Whelan W. J. A glycogen-debranching enzyme from Cytophaga. FEBS Lett. 1970 Dec 28;12(2):96–100. doi: 10.1016/0014-5793(70)80572-5. [DOI] [PubMed] [Google Scholar]
  4. Hatefi Y., Hanstein W. G. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1129–1136. doi: 10.1073/pnas.62.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KRISMAN C. R. A method for the colorimetric estimation of glycogen with iodine. Anal Biochem. 1962 Jul;4:17–23. doi: 10.1016/0003-2697(62)90014-3. [DOI] [PubMed] [Google Scholar]
  6. LELOIR L. F., DE FEKETE M. A., CARDINI C. E. Starch and oligosaccharide synthesis from uridine diphosphate glucose. J Biol Chem. 1961 Mar;236:636–641. [PubMed] [Google Scholar]
  7. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  8. Ozbun J. L., Hawker J. S., Preiss J. Multiple forms of -1,4 glucan synthetase from spinach leaves. Biochem Biophys Res Commun. 1971 May 7;43(3):631–636. doi: 10.1016/0006-291x(71)90661-9. [DOI] [PubMed] [Google Scholar]
  9. RECONDO E., LELOIR L. F. Adenosine diphosphate glucose and starch synthesis. Biochem Biophys Res Commun. 1961 Nov 1;6:85–88. doi: 10.1016/0006-291x(61)90389-8. [DOI] [PubMed] [Google Scholar]
  10. Slabnik E., Frydman R. B. A phosphorylase involved in starch biosynthesis. Biochem Biophys Res Commun. 1970 Feb 20;38(4):709–714. doi: 10.1016/0006-291x(70)90639-x. [DOI] [PubMed] [Google Scholar]
  11. Tsai C. Y., Nelson O. E. Two additional phosphorylases in developing maize seeds. Plant Physiol. 1969 Feb;44(2):159–167. doi: 10.1104/pp.44.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Walker G. J., Builder J. E. Metabolism of the reserve polysaccharide of Streptococcus mitis. Properties of branching enzyme, and its effect on the activity of glycogen synthetase. Eur J Biochem. 1971 May 11;20(1):14–21. doi: 10.1111/j.1432-1033.1971.tb01356.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES