Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jun;82(11):3916–3920. doi: 10.1073/pnas.82.11.3916

Paired helical filaments from Alzheimer disease patients contain cytoskeletal components.

G Perry, N Rizzuto, L Autilio-Gambetti, P Gambetti
PMCID: PMC397900  PMID: 3889918

Abstract

Neurofibrillary tangles from Alzheimer disease patients share antigenic determinants with neurofilaments and microtubule-associated proteins, as shown by light microscopy immunocytology. The present study addresses the issue of whether these determinants are located on the paired helical filaments or on other components of the neurofibrillary tangle. Sections from postmortem brains from Alzheimer disease patients were stained by using Bodian's silver method or immunostained by using poly- and monoclonal antibodies to neurofilaments and polyclonal antibodies to microtubules. Bodian's silver stain has an intense affinity for neurofibrillary tangles and has been shown to bind to specific domains of neurofilament subunits. The antibodies to neurofilaments used here immunostain most or all of the neurofibrillary tangles present in the sections whereas the antiserum to microtubule protein immunoreacted with about half of the neurofibrillary tangles. All of the antibodies as well as Bodian's silver stain reacted with the paired helical filaments. The epitopes that we have shown to be present in the paired helical filament, in contrast to the corresponding epitopes present in normal neuronal cytoskeleton, are insoluble in ionic detergent. It is concluded that these epitopes are integral components of the paired helical filaments and that, at least in part, paired helical filaments are derived from altered elements of the normal neuronal cytoskeleton.

Full text

PDF
3919

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderton B. H., Breinburg D., Downes M. J., Green P. J., Tomlinson B. E., Ulrich J., Wood J. N., Kahn J. Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature. 1982 Jul 1;298(5869):84–86. doi: 10.1038/298084a0. [DOI] [PubMed] [Google Scholar]
  2. Dahl D., Selkoe D. J., Pero R. T., Bignami A. Immunostaining of neurofibrillary tangles in Alzheimer's senile dementia with a neurofilament antiserum. J Neurosci. 1982 Jan;2(1):113–119. doi: 10.1523/JNEUROSCI.02-01-00113.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ellisman M. H., Porter K. R. Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 1980 Nov;87(2 Pt 1):464–479. doi: 10.1083/jcb.87.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gambetti P., Autilio Gambetti L., Papasozomenos S. C. Bodian's silver method stains neurofilament polypeptides. Science. 1981 Sep 25;213(4515):1521–1522. doi: 10.1126/science.6169146. [DOI] [PubMed] [Google Scholar]
  5. Gambetti P., Autilio-Gambetti L., Perry G., Shecket G., Crane R. C. Antibodies to neurofibrillary tangles of Alzheimer's disease raised from human and animal neurofilament fractions. Lab Invest. 1983 Oct;49(4):430–435. [PubMed] [Google Scholar]
  6. Geisler N., Kaufmann E., Fischer S., Plessmann U., Weber K. Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J. 1983;2(8):1295–1302. doi: 10.1002/j.1460-2075.1983.tb01584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glenner G. G. Amyloid deposits and amyloidosis: the beta-fibrilloses (second of two parts). N Engl J Med. 1980 Jun 12;302(24):1333–1343. doi: 10.1056/NEJM198006123022403. [DOI] [PubMed] [Google Scholar]
  8. Grundke-Iqbal I., Johnson A. B., Wisniewski H. M., Terry R. D., Iqbal K. Evidence that Alzheimer neurofibrillary tangles originate from neurotubules. Lancet. 1979 Mar 17;1(8116):578–580. doi: 10.1016/s0140-6736(79)91006-7. [DOI] [PubMed] [Google Scholar]
  9. Herzog W., Weber K. Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerization in vitro. Eur J Biochem. 1978 Dec 1;92(1):1–8. doi: 10.1111/j.1432-1033.1978.tb12716.x. [DOI] [PubMed] [Google Scholar]
  10. Hirano A., Dembitzer H. M., Kurland L. T., Zimmerman H. M. The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies and "rod-like" structures as seen in Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. J Neuropathol Exp Neurol. 1968 Apr;27(2):167–182. [PubMed] [Google Scholar]
  11. Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol. 1982 Jul;94(1):129–142. doi: 10.1083/jcb.94.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ihara Y., Abraham C., Selkoe D. J. Antibodies to paired helical filaments in Alzheimer's disease do not recognize normal brain proteins. Nature. 1983 Aug 25;304(5928):727–730. doi: 10.1038/304727a0. [DOI] [PubMed] [Google Scholar]
  13. Ishii T., Haga S., Tokutake S. Presence of neurofilament protein in Alzheimer's neurofibrillary tangles (ANT). An immunofluorescent study. Acta Neuropathol. 1979 Nov;48(2):105–112. doi: 10.1007/BF00691151. [DOI] [PubMed] [Google Scholar]
  14. Julien J. P., Mushynski W. E. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem. 1983 Mar 25;258(6):4019–4025. [PubMed] [Google Scholar]
  15. Leterrier J. F., Liem R. K., Shelanski M. L. Interactions between neurofilaments and microtubule-associated proteins: a possible mechanism for intraorganellar bridging. J Cell Biol. 1982 Dec;95(3):982–986. doi: 10.1083/jcb.95.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Metuzals J., Hodge A. J., Lasek R. J., Kaiserman-Abramof I. R. Neurofilamentous network and filamentous matrix preserved and isolated by different techniques from squid giant axon. Cell Tissue Res. 1983;228(3):415–432. doi: 10.1007/BF00211465. [DOI] [PubMed] [Google Scholar]
  17. Metuzals J., Montpetit V., Clapin D. F. Organization of the neurofilamentous network. Cell Tissue Res. 1981;214(3):455–482. doi: 10.1007/BF00233488. [DOI] [PubMed] [Google Scholar]
  18. Tomlinson B. E., Blessed G., Roth M. Observations on the brains of demented old people. J Neurol Sci. 1970 Sep;11(3):205–242. doi: 10.1016/0022-510x(70)90063-8. [DOI] [PubMed] [Google Scholar]
  19. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang G. P., Grundke-Iqbal I., Kascsak R. J., Iqbal K., Wisniewski H. M. Alzheimer neurofibrillary tangles: monoclonal antibodies to inherent antigen(s). Acta Neuropathol. 1984;62(4):268–275. doi: 10.1007/BF00687608. [DOI] [PubMed] [Google Scholar]
  21. Wiśniewski H. M., Narang H. K., Terry R. D. Neurofibrillary tangles of paired helical filaments. J Neurol Sci. 1976 Feb;27(2):173–181. doi: 10.1016/0022-510x(76)90059-9. [DOI] [PubMed] [Google Scholar]
  22. Yagishita S., Itoh Y., Nan W., Amano N. Reappraisal of the fine structure of Alzheimer's neurofibrillary tangles. Acta Neuropathol. 1981;54(3):239–246. doi: 10.1007/BF00687747. [DOI] [PubMed] [Google Scholar]
  23. Yoshimura N. Evidence that paired helical filaments originate from neurofilaments--electron microscope observations of neurites in senile plaques in the brain in Alzheimer's disease. Clin Neuropathol. 1984 Jan-Feb;3(1):22–27. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES