Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 23;93(2):609–614. doi: 10.1073/pnas.93.2.609

Multineuronal codes in retinal signaling.

M Meister 1
PMCID: PMC40099  PMID: 8570603

Abstract

The visual world is presented to the brain through patterns of action potentials in the population of optic nerve fibers. Single-neuron recordings show that each retinal ganglion cell has a spatially restricted receptive field, a limited integration time, and a characteristic spectral sensitivity. Collectively, these response properties define the visual message conveyed by that neuron's action potentials. Since the size of the optic nerve is strictly constrained, one expects the retina to generate a highly efficient representation of the visual scene. By contrast, the receptive fields of nearby ganglion cells often overlap, suggesting great redundancy among the retinal output signals. Recent multineuron recordings may help resolve this paradox. They reveal concerted firing patterns among ganglion cells, in which small groups of nearby neurons fire synchronously with delays of only a few milliseconds. As there are many more such firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of optic nerve fibers. This paper will review the evidence for a distributed coding scheme in the retinal output. The performance limits of such codes are analyzed with simple examples, illustrating that they allow a powerful trade-off between spatial and temporal resolution.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnett D. W. Statistical dependence between neighboring retinal ganglion cells in goldfish. Exp Brain Res. 1978 May 12;32(1):49–53. doi: 10.1007/BF00237389. [DOI] [PubMed] [Google Scholar]
  2. Arnett D., Spraker T. E. Cross-correlation analysis of the maintained discharge of rabbit retinal ganglion cells. J Physiol. 1981 Aug;317:29–47. doi: 10.1113/jphysiol.1981.sp013812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldi P., Heiligenberg W. How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol Cybern. 1988;59(4-5):313–318. doi: 10.1007/BF00332921. [DOI] [PubMed] [Google Scholar]
  4. CHOW K., BLUM J. S., BLUM R. A. Cell ratios in the thalamo-cortical visual system of macaca mulatta. J Comp Neurol. 1950 Apr;92(2):227–239. doi: 10.1002/cne.900920208. [DOI] [PubMed] [Google Scholar]
  5. Cleland B. G., Levick W. R., Morstyn R., Wagner H. G. Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex. J Physiol. 1976 Feb;255(1):299–320. doi: 10.1113/jphysiol.1976.sp011281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enroth-Cugell C., Freeman A. W. The receptive-field spatial structure of cat retinal Y cells. J Physiol. 1987 Mar;384:49–79. doi: 10.1113/jphysiol.1987.sp016443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fischer B. Overlap of receptive field centers and representation of the visual field in the cat's optic tract. Vision Res. 1973 Nov;13(11):2113–2120. doi: 10.1016/0042-6989(73)90188-0. [DOI] [PubMed] [Google Scholar]
  8. Freund T. F., Martin K. A., Soltesz I., Somogyi P., Whitteridge D. Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. J Comp Neurol. 1989 Nov 8;289(2):315–336. doi: 10.1002/cne.902890211. [DOI] [PubMed] [Google Scholar]
  9. Hochstein S., Shapley R. M. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 1976 Nov;262(2):237–264. doi: 10.1113/jphysiol.1976.sp011594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnsen J. A., Levine M. W. Correlation of activity in neighbouring goldfish ganglion cells: relationship between latency and lag. J Physiol. 1983 Dec;345:439–449. doi: 10.1113/jphysiol.1983.sp014987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levine M. W., Zimmerman R. P. Evidence for local circuits within the receptive fields of retinal ganglion cells in goldfish. Vis Neurosci. 1988;1(4):377–385. doi: 10.1017/s0952523800004144. [DOI] [PubMed] [Google Scholar]
  12. Mastronarde D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J Neurophysiol. 1983 Feb;49(2):303–324. doi: 10.1152/jn.1983.49.2.303. [DOI] [PubMed] [Google Scholar]
  13. Mastronarde D. N. Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. J Neurophysiol. 1983 Feb;49(2):325–349. doi: 10.1152/jn.1983.49.2.325. [DOI] [PubMed] [Google Scholar]
  14. Mastronarde D. N. Interactions between ganglion cells in cat retina. J Neurophysiol. 1983 Feb;49(2):350–365. doi: 10.1152/jn.1983.49.2.350. [DOI] [PubMed] [Google Scholar]
  15. Meister M., Lagnado L., Baylor D. A. Concerted signaling by retinal ganglion cells. Science. 1995 Nov 17;270(5239):1207–1210. doi: 10.1126/science.270.5239.1207. [DOI] [PubMed] [Google Scholar]
  16. Meister M., Pine J., Baylor D. A. Multi-neuronal signals from the retina: acquisition and analysis. J Neurosci Methods. 1994 Jan;51(1):95–106. doi: 10.1016/0165-0270(94)90030-2. [DOI] [PubMed] [Google Scholar]
  17. Peichl L., Wässle H. Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. J Physiol. 1979 Jun;291:117–141. doi: 10.1113/jphysiol.1979.sp012803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rodieck R. W. Maintained activity of cat retinal ganglion cells. J Neurophysiol. 1967 Sep;30(5):1043–1071. doi: 10.1152/jn.1967.30.5.1043. [DOI] [PubMed] [Google Scholar]
  19. Schnapf J. L., Nunn B. J., Meister M., Baylor D. A. Visual transduction in cones of the monkey Macaca fascicularis. J Physiol. 1990 Aug;427:681–713. doi: 10.1113/jphysiol.1990.sp018193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Westheimer G., McKee S. P. Spatial configurations for visual hyperacuity. Vision Res. 1977;17(8):941–947. doi: 10.1016/0042-6989(77)90069-4. [DOI] [PubMed] [Google Scholar]
  21. Winfield D. A., Powell T. P. Laminar cell counts and geniculo-cortical boutons in area 17 of cat and monkey. Brain Res. 1983 Oct 31;277(2):223–229. doi: 10.1016/0006-8993(83)90929-0. [DOI] [PubMed] [Google Scholar]
  22. Wässle H., Boycott B. B. Functional architecture of the mammalian retina. Physiol Rev. 1991 Apr;71(2):447–480. doi: 10.1152/physrev.1991.71.2.447. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES