Abstract
Key information about the biosynthesis of polyketide metabolites has been uncovered by sequence analysis of the tetracenomycin C polyketide synthase genes (tcml) from Streptomyces glaucescens GLA.0. The sequence data revealed the presence of three complete open reading frames (ORFs). ORF1 and ORF2 appear to be translationally coupled and would encode proteins containing 426 and 405 amino acids, respectively. The two deduced proteins are homologous to known beta-ketoacyl synthases. ORF3 begins 70 nucleotides after the stop codon of ORF2 and would code for an 83 amino acid protein with a strong resemblance to known bacterial, animal and plant acyl-carrier proteins (ACP). The presence of an ACP gene within the tcm gene cluster suggests that different ACPs are used in fatty acid and polyketide biosynthesis in Streptomyces. We conclude from these data and earlier information that polyketide biosynthesis in S. glaucescens, and most likely in other bacteria, involves a multienzyme complex consisting of at least five types of enzymes: acylCoA transferases that load the acyl and 2-carboxyacyl precursors onto the ACP; a beta-ketoacyl synthase that, along with the acylated ACP, forms the poly-beta-ketoacyl intermediates; a poly-beta-ketone cyclase that forms carbocyclic structures from the latter intermediates; a beta-ketoacyl oxidoreductase that forms beta-hydroxyacyl intermediates or reduces ketone groups in fully formed polyketides; and a thioesterase that releases the assembled polyketide from the enzyme.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bibb M. J., Cohen S. N. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet. 1982;187(2):265–277. doi: 10.1007/BF00331128. [DOI] [PubMed] [Google Scholar]
- Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
- Chang S. I., Hammes G. G. Amino acid sequences of substrate-binding sites in chicken liver fatty acid synthase. Biochemistry. 1988 Jun 28;27(13):4753–4760. doi: 10.1021/bi00413a026. [DOI] [PubMed] [Google Scholar]
- Collins J. F., Coulson A. F., Lyall A. The significance of protein sequence similarities. Comput Appl Biosci. 1988 Mar;4(1):67–71. doi: 10.1093/bioinformatics/4.1.67. [DOI] [PubMed] [Google Scholar]
- Debellé F., Sharma S. B. Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation. Nucleic Acids Res. 1986 Sep 25;14(18):7453–7472. doi: 10.1093/nar/14.18.7453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimroth P., Walter H., Lynen F. Biosynthese von 6-Methylsalicylsäure. Eur J Biochem. 1970 Mar 1;13(1):98–110. doi: 10.1111/j.1432-1033.1970.tb00904.x. [DOI] [PubMed] [Google Scholar]
- Hale R. S., Jordan K. N., Leadlay P. F. A small, discrete acyl carrier protein is involved in de novo fatty acid biosynthesis in Streptomyces erythraeus. FEBS Lett. 1987 Nov 16;224(1):133–136. doi: 10.1016/0014-5793(87)80436-2. [DOI] [PubMed] [Google Scholar]
- Hallam S. E., Malpartida F., Hopwood D. A. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene. 1988 Dec 30;74(2):305–320. doi: 10.1016/0378-1119(88)90165-5. [DOI] [PubMed] [Google Scholar]
- Harms E., Higgins E., Chen J. W., Umbarger H. E. Translational coupling between the ilvD and ilvA genes of Escherichia coli. J Bacteriol. 1988 Oct;170(10):4798–4807. doi: 10.1128/jb.170.10.4798-4807.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
- Hijikata M., Ishii N., Kagamiyama H., Osumi T., Hashimoto T. Structural analysis of cDNA for rat peroxisomal 3-ketoacyl-CoA thiolase. J Biol Chem. 1987 Jun 15;262(17):8151–8158. [PubMed] [Google Scholar]
- Kanehisa M. I. Los Alamos sequence analysis package for nucleic acids and proteins. Nucleic Acids Res. 1982 Jan 11;10(1):183–196. doi: 10.1093/nar/10.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
- Kauppinen S., Siggaard-Andersen M., von Wettstein-Knowles P. beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun. 1988;53(6):357–370. doi: 10.1007/BF02983311. [DOI] [PubMed] [Google Scholar]
- Kreuzaler F., Hahlbrock K. Enzymic synthesis of an aromatic ring from acetate units. Partial purification and some properties of flavanone synthase from cell-suspension cultures of Petroselinum hortense. Eur J Biochem. 1975 Aug 1;56(1):205–213. doi: 10.1111/j.1432-1033.1975.tb02223.x. [DOI] [PubMed] [Google Scholar]
- Kuo T. M., Ohlrogge J. B. The primary structure of spinach acyl carrier protein. Arch Biochem Biophys. 1984 Oct;234(1):290–296. doi: 10.1016/0003-9861(84)90351-5. [DOI] [PubMed] [Google Scholar]
- Malpartida F., Hallam S. E., Kieser H. M., Motamedi H., Hutchinson C. R., Butler M. J., Sugden D. A., Warren M., McKillop C., Bailey C. R. Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes. 1987 Feb 26-Mar 4Nature. 325(6107):818–821. doi: 10.1038/325818a0. [DOI] [PubMed] [Google Scholar]
- Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal Biochem. 1984 May 1;138(2):267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
- Mizusawa S., Nishimura S., Seela F. Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 1986 Feb 11;14(3):1319–1324. doi: 10.1093/nar/14.3.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohamed A. H., Chirala S. S., Mody N. H., Huang W. Y., Wakil S. J. Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived from FAS2 gene sequence. J Biol Chem. 1988 Sep 5;263(25):12315–12325. [PubMed] [Google Scholar]
- Motamedi H., Hutchinson C. R. Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4445–4449. doi: 10.1073/pnas.84.13.4445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motamedi H., Wendt-Pienkowski E., Hutchinson C. R. Isolation of tetracenomycin C-nonproducing Streptomyces glaucescens mutants. J Bacteriol. 1986 Aug;167(2):575–580. doi: 10.1128/jb.167.2.575-580.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peoples O. P., Masamune S., Walsh C. T., Sinskey A. J. Biosynthetic thiolase from Zoogloea ramigera. III. Isolation and characterization of the structural gene. J Biol Chem. 1987 Jan 5;262(1):97–102. [PubMed] [Google Scholar]
- Reimold U., Kröger M., Kreuzaler F., Hahlbrock K. Coding and 3' non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J. 1983;2(10):1801–1805. doi: 10.1002/j.1460-2075.1983.tb01661.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi A., Corcoran J. W. Identification of a multienzyme complex synthesizing fatty acids in the actinomycete Streptomyces erythreus. Biochem Biophys Res Commun. 1973 Feb 5;50(3):597–602. doi: 10.1016/0006-291x(73)91286-2. [DOI] [PubMed] [Google Scholar]
- Schweizer M., Roberts L. M., Höltke H. J., Takabayashi K., Höllerer E., Hoffmann B., Müller G., Köttig H., Schweizer E. The pentafunctional FAS1 gene of yeast: its nucleotide sequence and order of the catalytic domains. Mol Gen Genet. 1986 Jun;203(3):479–486. doi: 10.1007/BF00422073. [DOI] [PubMed] [Google Scholar]
- Shearman C. A., Rossen L., Johnston A. W., Downie J. A. The Rhizobium leguminosarum nodulation gene nodF encodes a polypeptide similar to acyl-carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J. 1986 Apr;5(4):647–652. doi: 10.1002/j.1460-2075.1986.tb04262.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman D. H., Malpartida F., Bibb M. J., Kieser H. M., Bibb M. J., Hopwood D. A. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 1989 Sep;8(9):2717–2725. doi: 10.1002/j.1460-2075.1989.tb08413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staden R. Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):521–538. doi: 10.1093/nar/12.1part2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volpe J. J., Vagelos P. R. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol Rev. 1976 Apr;56(2):339–417. doi: 10.1152/physrev.1976.56.2.339. [DOI] [PubMed] [Google Scholar]
- Williams D. F., Mieler W. F., Lewandowski M., Greenberg M. Echographic verification of radioactive plaque position in the treatment of melanomas. Arch Ophthalmol. 1988 Nov;106(11):1623–1624. doi: 10.1001/archopht.1988.01060140791057. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Yue S., Motamedi H., Wendt-Pienkowski E., Hutchinson C. R. Anthracycline metabolites of tetracenomycin C-nonproducing Streptomyces glaucescens mutants. J Bacteriol. 1986 Aug;167(2):581–586. doi: 10.1128/jb.167.2.581-586.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zalkin H., Ebbole D. J. Organization and regulation of genes encoding biosynthetic enzymes in Bacillus subtilis. J Biol Chem. 1988 Feb 5;263(4):1595–1598. [PubMed] [Google Scholar]