Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1989 Oct;8(10):2967–2974. doi: 10.1002/j.1460-2075.1989.tb08446.x

Identification of a common signal associated with cellular proliferation stimulated by four haemopoietic growth factors in a highly enriched population of granulocyte/macrophage colony-forming cells.

N Cook 1, T M Dexter 1, B I Lord 1, E J Cragoe Jr 1, A D Whetton 1
PMCID: PMC401367  PMID: 2555152

Abstract

We have prepared a population of bone marrow cells that is highly enriched in neutrophil/macrophage progenitor cells (GM-CFC). Four distinct haemopoietic growth factors can stimulate the formation of mature cells from this population, although the proportions of neutrophils and/or macrophages produced varied depending on the growth factor employed: interleukin 3 (IL-3) and granulocyte/macrophage colony-stimulating factor (GM-CSF) stimulated the formation of colonies containing both neutrophils and macrophages; macrophage colony-stimulating factor (M-CSF) produced predominantly macrophage colonies; and granulocyte colony-stimulating factor (G-CSF) promoted neutrophil colony formation. Combinations of these four growth factors did not lead to any additive or synergistic effect on the number of colonies produced in clonal soft agar assays, indicating the presence of a common set of cells responsive to all four haemopoietic growth factors. These enriched progenitor cells therefore represent an ideal population to study myeloid growth-factor-stimulated survival, proliferation and development. Using this population we have examined the molecular signalling mechanisms associated with progenitor cell proliferation. We have shown that modulation of cyclic AMP levels has no apparent role in GM-CFC proliferation, whereas phorbol esters and/or Ca2+ ionophore can stimulate DNA synthesis, indicating a possible role for protein kinase C activation and increased cytosolic Ca2+ levels in the proliferation of these cells. The lack of ability of all four myeloid growth factors to mobilize intracellular Ca2+ infers that these effects are not achieved via inositol lipid hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
2972

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begley C. G., Metcalf D., Nicola N. A. Binding characteristics and proliferative action of purified granulocyte colony-stimulating factor (G-CSF) on normal and leukemic human promyelocytes. Exp Hematol. 1988 Jan;16(1):71–79. [PubMed] [Google Scholar]
  2. Begley C. G., Metcalf D., Nicola N. A. Primary human myeloid leukemia cells: comparative responsiveness to proliferative stimulation by GM-CSF or G-CSF and membrane expression of CSF receptors. Leukemia. 1987 Jan;1(1):1–8. [PubMed] [Google Scholar]
  3. Blumberg P. M., Leach K. L., König B., Jeng A. Y., Sharkey N. A. Receptors for the phorbol ester tumour promoters. Ciba Found Symp. 1985;116:205–223. doi: 10.1002/9780470720974.ch13. [DOI] [PubMed] [Google Scholar]
  4. Clark S. C., Kamen R. The human hematopoietic colony-stimulating factors. Science. 1987 Jun 5;236(4806):1229–1237. doi: 10.1126/science.3296190. [DOI] [PubMed] [Google Scholar]
  5. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  6. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  7. Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
  8. Guilbert L. J., Nelson D. J., Hamilton J. A., Williams N. The nature of 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated hemopoiesis, colony stimulating factor (CSF) requirement for colony formation, and the effect of TPA on [125I]CSF-1 binding to macrophages. J Cell Physiol. 1983 Jun;115(3):276–282. doi: 10.1002/jcp.1041150310. [DOI] [PubMed] [Google Scholar]
  9. Heyworth C. M., Ponting I. L., Dexter T. M. The response of haemopoietic cells to growth factors: developmental implications of synergistic interactions. J Cell Sci. 1988 Oct;91(Pt 2):239–247. doi: 10.1242/jcs.91.2.239. [DOI] [PubMed] [Google Scholar]
  10. Iscove N. N., Till J. E., McCulloch E. A. The proliferative states of mouse granulopoietic progenitor cells. Proc Soc Exp Biol Med. 1970 May;134(1):33–36. doi: 10.3181/00379727-134-34721. [DOI] [PubMed] [Google Scholar]
  11. Johnson G. R., Metcalf D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3879–3882. doi: 10.1073/pnas.74.9.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koike K., Stanley E. R., Ihle J. N., Ogawa M. Macrophage colony formation supported by purified CSF-1 and/or interleukin 3 in serum-free culture: evidence for hierarchical difference in macrophage colony-forming cells. Blood. 1986 Apr;67(4):859–864. [PubMed] [Google Scholar]
  13. Kojima I., Lippes H., Kojima K., Rasmussen H. Aldosterone secretion: effect of phorbol ester and A23187. Biochem Biophys Res Commun. 1983 Oct 31;116(2):555–562. doi: 10.1016/0006-291x(83)90559-4. [DOI] [PubMed] [Google Scholar]
  14. Lord B. I., Spooncer E. Isolation of haemopoietic spleen colony forming cells. Lymphokine Res. 1986 Winter;5(1):59–72. [PubMed] [Google Scholar]
  15. Mastro A. M., Smith M. C. Calcium-dependent activation of lymphocytes by ionophore, A23187, and a phorbol ester tumor promoter. J Cell Physiol. 1983 Jul;116(1):51–56. doi: 10.1002/jcp.1041160109. [DOI] [PubMed] [Google Scholar]
  16. Metcalf D., Merchav S. Effects of GM-CSF deprivation on precursors of granulocytes and macrophages. J Cell Physiol. 1982 Sep;112(3):411–418. doi: 10.1002/jcp.1041120315. [DOI] [PubMed] [Google Scholar]
  17. Metcalf D., Nicola N. A. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J Cell Physiol. 1983 Aug;116(2):198–206. doi: 10.1002/jcp.1041160211. [DOI] [PubMed] [Google Scholar]
  18. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985 Jul 5;229(4708):16–22. doi: 10.1126/science.2990035. [DOI] [PubMed] [Google Scholar]
  19. Moolenaar W. H. Effects of growth factors on intracellular pH regulation. Annu Rev Physiol. 1986;48:363–376. doi: 10.1146/annurev.ph.48.030186.002051. [DOI] [PubMed] [Google Scholar]
  20. Moore M. A., Warren D. J. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7134–7138. doi: 10.1073/pnas.84.20.7134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murayama T., Ui M. Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J Biol Chem. 1983 Mar 10;258(5):3319–3326. [PubMed] [Google Scholar]
  22. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  23. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  24. Rink T. J., Sanchez A., Hallam T. J. Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature. 1983 Sep 22;305(5932):317–319. doi: 10.1038/305317a0. [DOI] [PubMed] [Google Scholar]
  25. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. doi: 10.1126/science.3018928. [DOI] [PubMed] [Google Scholar]
  27. Simchowitz L., Cragoe E. J., Jr Inhibition of chemotactic factor-activated Na+/H+ exchange in human neutrophils by analogues of amiloride: structure-activity relationships in the amiloride series. Mol Pharmacol. 1986 Aug;30(2):112–120. [PubMed] [Google Scholar]
  28. Sonoda Y., Yang Y. C., Wong G. G., Clark S. C., Ogawa M. Analysis in serum-free culture of the targets of recombinant human hemopoietic growth factors: interleukin 3 and granulocyte/macrophage-colony-stimulating factor are specific for early developmental stages. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4360–4364. doi: 10.1073/pnas.85.12.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Souza L. M., Boone T. C., Gabrilove J., Lai P. H., Zsebo K. M., Murdock D. C., Chazin V. R., Bruszewski J., Lu H., Chen K. K. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 1986 Apr 4;232(4746):61–65. doi: 10.1126/science.2420009. [DOI] [PubMed] [Google Scholar]
  30. Spooncer E., Heyworth C. M., Dunn A., Dexter T. M. Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation. 1986;31(2):111–118. doi: 10.1111/j.1432-0436.1986.tb00391.x. [DOI] [PubMed] [Google Scholar]
  31. Stanley E. R. Action of the colony-stimulating factor, CSF-1. Ciba Found Symp. 1986;118:29–41. doi: 10.1002/9780470720998.ch3. [DOI] [PubMed] [Google Scholar]
  32. Stanley E. R., Bartocci A., Patinkin D., Rosendaal M., Bradley T. R. Regulation of very primitive, multipotent, hemopoietic cells by hemopoietin-1. Cell. 1986 Jun 6;45(5):667–674. doi: 10.1016/0092-8674(86)90781-6. [DOI] [PubMed] [Google Scholar]
  33. Stanley E. R., Guilbert L. J., Tushinski R. J., Bartelmez S. H. CSF-1--a mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem. 1983;21(2):151–159. doi: 10.1002/jcb.240210206. [DOI] [PubMed] [Google Scholar]
  34. Stanley E. R., Heard P. M. Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. J Biol Chem. 1977 Jun 25;252(12):4305–4312. [PubMed] [Google Scholar]
  35. Tanaka C., Taniyama K., Kusunoki M. A phorbol ester and A23187 act synergistically to release acetylcholine from the guinea pig ileum. FEBS Lett. 1984 Sep 17;175(1):165–169. doi: 10.1016/0014-5793(84)80591-8. [DOI] [PubMed] [Google Scholar]
  36. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vellenga E., Young D. C., Wagner K., Wiper D., Ostapovicz D., Griffin J. D. The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood. 1987 Jun;69(6):1771–1776. [PubMed] [Google Scholar]
  38. Walker F., Nicola N. A., Metcalf D., Burgess A. W. Hierarchical down-modulation of hemopoietic growth factor receptors. Cell. 1985 Nov;43(1):269–276. doi: 10.1016/0092-8674(85)90032-7. [DOI] [PubMed] [Google Scholar]
  39. Whetton A. D., Heyworth C. M., Dexter T. M. Phorbol esters activate protein kinase C and glucose transport and can replace the requirement for growth factor in interleukin-3-dependent multipotent stem cells. J Cell Sci. 1986 Aug;84:93–104. doi: 10.1242/jcs.84.1.93. [DOI] [PubMed] [Google Scholar]
  40. Whetton A. D., Monk P. N., Consalvey S. D., Downes C. P. The haemopoietic growth factors interleukin 3 and colony stimulating factor-1 stimulate proliferation but do not induce inositol lipid breakdown in murine bone-marrow-derived macrophages. EMBO J. 1986 Dec 1;5(12):3281–3286. doi: 10.1002/j.1460-2075.1986.tb04640.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Whetton A. D., Monk P. N., Consalvey S. D., Huang S. J., Dexter T. M., Downes C. P. Interleukin 3 stimulates proliferation via protein kinase C activation without increasing inositol lipid turnover. Proc Natl Acad Sci U S A. 1988 May;85(10):3284–3288. doi: 10.1073/pnas.85.10.3284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Whetton A. D., Vallance S. J., Monk P. N., Cragoe E. J., Dexter T. M., Heyworth C. M. Interleukin-3-stimulated haemopoietic stem cell proliferation. Evidence for activation of protein kinase C and Na+/H+ exchange without inositol lipid hydrolysis. Biochem J. 1988 Dec 1;256(2):585–592. doi: 10.1042/bj2560585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams D. E., Straneva J. E., Cooper S., Shadduck R. K., Waheed A., Gillis S., Urdal D., Broxmeyer H. E. Interactions between purified murine colony-stimulating factors (natural CSF-1, recombinant GM-CSF, and recombinant IL-3) on the in vitro proliferation of purified murine granulocyte-macrophage progenitor cells. Exp Hematol. 1987 Nov;15(10):1007–1012. [PubMed] [Google Scholar]
  44. Williams D. E., Straneva J. E., Shen R. N., Broxmeyer H. E. Purification of murine bone-marrow-derived granulocyte-macrophage colony-forming cells. Exp Hematol. 1987 Mar;15(3):243–250. [PubMed] [Google Scholar]
  45. Yeager A. M., Levin F. C., Levin J. Effects of cyclophosphamide on murine bone marrow and splenic megakaryocyte-CFC, granulocyte-macrophage-CFC, and peripheral blood cell levels. J Cell Physiol. 1982 Aug;112(2):222–228. doi: 10.1002/jcp.1041120210. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES