Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 9;93(1):186–190. doi: 10.1073/pnas.93.1.186

Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase.

M Bard 1, D A Bruner 1, C A Pierson 1, N D Lees 1, B Biermann 1, L Frye 1, C Koegel 1, R Barbuch 1
PMCID: PMC40203  PMID: 8552601

Abstract

We have cloned the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene. The sterol methyl oxidase performs the first of three enzymic steps required to remove the two C-4 methyl groups leading to cholesterol (animal), ergosterol (fungal), and stigmasterol (plant) biosynthesis. An ergosterol auxotroph, erg25, which fails to demethylate and concomitantly accumulates 4,4-dimethylzy-mosterol, was isolated after mutagenesis. A complementing clone consisting of a 1.35-kb Dra I fragment encoded a 309-amino acid polypeptide (calculated molecular mass, 36.48 kDa). The amino acid sequence shows a C-terminal endoplasmic reticulum retrieval signal KKXX and three histidine-rich clusters found in eukaryotic membrane desaturases and in a bacterial alkane hydroxylase and xylene monooxygenase. The sterol profile of an ERG25 disruptant was consistent with the erg25 allele obtained by mutagenesis.

Full text

PDF
190

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthington B. A., Bennett L. G., Skatrud P. L., Guynn C. J., Barbuch R. J., Ulbright C. E., Bard M. Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene. 1991 Jun 15;102(1):39–44. doi: 10.1016/0378-1119(91)90535-j. [DOI] [PubMed] [Google Scholar]
  2. Byskov A. G., Andersen C. Y., Nordholm L., Thøgersen H., Xia G., Wassmann O., Andersen J. V., Guddal E., Roed T. Chemical structure of sterols that activate oocyte meiosis. Nature. 1995 Apr 6;374(6522):559–562. doi: 10.1038/374559a0. [DOI] [PubMed] [Google Scholar]
  3. Fukushima H., Grinstead G. F., Gaylor J. L. Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase. J Biol Chem. 1981 May 25;256(10):4822–4826. [PubMed] [Google Scholar]
  4. Kuchta T., Bartková K., Kubinec R. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthiobenzothiazole. Biochem Biophys Res Commun. 1992 Nov 30;189(1):85–91. doi: 10.1016/0006-291x(92)91529-y. [DOI] [PubMed] [Google Scholar]
  5. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  6. Lees N. D., Skaggs B., Kirsch D. R., Bard M. Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review. Lipids. 1995 Mar;30(3):221–226. doi: 10.1007/BF02537824. [DOI] [PubMed] [Google Scholar]
  7. Lewis T. L., Keesler G. A., Fenner G. P., Parks L. W. Pleiotropic mutations in Saccharomyces cerevisiae affecting sterol uptake and metabolism. Yeast. 1988 Jun;4(2):93–106. doi: 10.1002/yea.320040203. [DOI] [PubMed] [Google Scholar]
  8. Maitra U. S., Mohan V. P., Kochi H., Shankar V., Adlersberg M., Liu K. P., Ponticorvo L., Sprinson D. B. Purification of a terminal oxygenase in demethylation of C-30 of lanosterol. Biochem Biophys Res Commun. 1982 Sep 30;108(2):517–525. doi: 10.1016/0006-291x(82)90859-2. [DOI] [PubMed] [Google Scholar]
  9. Maitra U. S., Mohan V. P., Sprinson D. B. Biosynthetic preparation of labeled 4,4-dimethylzymosterol. Steroids. 1989 Mar-May;53(3-5):597–605. doi: 10.1016/0039-128x(89)90034-2. [DOI] [PubMed] [Google Scholar]
  10. Miller W. L., Kalafer M. E., Gaylor J. L., Delwiche C. V. Investigation of the component reactions of oxidative sterol demethylation. Study of the aerobic and anaerobic processes. Biochemistry. 1967 Sep;6(9):2673–2678. doi: 10.1021/bi00861a005. [DOI] [PubMed] [Google Scholar]
  11. Molzahn S. W., Woods R. A. Polyene resistance and the isolation of sterol mutants in Saccharomyces cerevisiae. J Gen Microbiol. 1972 Sep;72(2):339–348. doi: 10.1099/00221287-72-2-339. [DOI] [PubMed] [Google Scholar]
  12. Plemenitas A., Havel C. M., Watson J. A. Sterol-mediated regulation of mevalonic acid synthesis. Accumulation of 4-carboxysterols as the predominant sterols synthesized in a Chinese hamster ovary cell cholesterol auxotroph (mutant 215). J Biol Chem. 1990 Oct 5;265(28):17012–17017. [PubMed] [Google Scholar]
  13. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. R. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987;60(2-3):237–243. doi: 10.1016/0378-1119(87)90232-0. [DOI] [PubMed] [Google Scholar]
  14. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  15. Shanklin J., Whittle E., Fox B. G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry. 1994 Nov 1;33(43):12787–12794. doi: 10.1021/bi00209a009. [DOI] [PubMed] [Google Scholar]
  16. Shin J., Dunbrack R. L., Jr, Lee S., Strominger J. L. Signals for retention of transmembrane proteins in the endoplasmic reticulum studied with CD4 truncation mutants. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1918–1922. doi: 10.1073/pnas.88.5.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vanden Bossche H., Marichal P., Le Jeune L., Coene M. C., Gorrens J., Cools W. Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob Agents Chemother. 1993 Oct;37(10):2101–2105. doi: 10.1128/aac.37.10.2101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Williams M. T., Gaylor J. L., Morris H. P. Investigation of the rate-determining microsomal reaction of cholesterol biosynthesis from lanosterol in Morris hepatomas and liver. Cancer Res. 1977 May;37(5):1377–1383. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES