Abstract
An N-terminally 9-residue elongated form of secretin, secretin-(-9 to 27) amide, was isolated from porcine intestinal tissue and characterized. Current knowledge about peptide processing sites does not allow unambiguous prediction of the signal peptide cleavage site in preprosecretin but suggests cleavage in the region of residues -10 to -14 counted upstream from the N terminus of the hormone. However, the structure of the isolated peptide suggests that the cleavage between the signal peptide and the N-terminal propeptide occurs at the C-terminal side of residue -10. Moreover, the isolated peptide demonstrates that secretin can be fully processed C-terminally prior to the final N-terminal cleavage. The results from this report, and those from earlier studies, where C-terminally elongated variants were isolated, show that the processing of the secretin precursor may proceed by one of two alternative pathways, in which either of the two ends is processed first. The bioactivity of the N-terminally extended peptide on exocrine pancreatic secretion was lower than that of secretin, indicating the importance of the finally processed free N terminus of the hormone for interaction with secretin receptors.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayliss W. M., Starling E. H. The mechanism of pancreatic secretion. J Physiol. 1902 Sep 12;28(5):325–353. doi: 10.1113/jphysiol.1902.sp000920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlquist M., Rökaeus A. Isolation of a proform of porcine secretin by ion-exchange and reversed-phase high-performance liquid chromatography. J Chromatogr. 1984 Jul 27;296:143–151. doi: 10.1016/s0021-9673(01)96408-8. [DOI] [PubMed] [Google Scholar]
- Chen Z. W., Agerberth B., Gell K., Andersson M., Mutt V., Ostenson C. G., Efendić S., Barros-Söderling J., Persson B., Jörnvall H. Isolation and characterization of porcine diazepam-binding inhibitor, a polypeptide not only of cerebral occurrence but also common in intestinal tissues and with effects on regulation of insulin release. Eur J Biochem. 1988 Jun 1;174(2):239–245. doi: 10.1111/j.1432-1033.1988.tb14088.x. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberlein G. A., Eysselein V. E., Davis M. T., Lee T. D., Shively J. E., Grandt D., Niebel W., Williams R., Moessner J., Zeeh J. Patterns of prohormone processing. Order revealed by a new procholecystokinin-derived peptide. J Biol Chem. 1992 Jan 25;267(3):1517–1521. [PubMed] [Google Scholar]
- Gafvelin G., Carlquist M., Mutt V. A proform of secretin with high secretin-like bioactivity. FEBS Lett. 1985 May 20;184(2):347–352. doi: 10.1016/0014-5793(85)80636-0. [DOI] [PubMed] [Google Scholar]
- Gafvelin G., Jörnvall H., Mutt V. Processing of prosecretin: isolation of a secretin precursor from porcine intestine. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6781–6785. doi: 10.1073/pnas.87.17.6781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh N., Furuya T., Ozaki K., Ohta M., Kawasaki T. The secretin precursor gene. Structure of the coding region and expression in the brain. J Biol Chem. 1991 Jul 5;266(19):12595–12598. [PubMed] [Google Scholar]
- JORPES J. E., MUTT V., MAGNUSSON S., STEELE B. B. Amino acid composition and N-terminal amino acid sequence of porcine secretin. Biochem Biophys Res Commun. 1962 Oct 17;9:275–279. doi: 10.1016/0006-291x(62)90073-6. [DOI] [PubMed] [Google Scholar]
- Katopodis A. G., Ping D. S., Smith C. E., May S. W. Functional and structural characterization of peptidylamidoglycolate lyase, the enzyme catalyzing the second step in peptide amidation. Biochemistry. 1991 Jun 25;30(25):6189–6194. doi: 10.1021/bi00239a016. [DOI] [PubMed] [Google Scholar]
- Kofod H., Thams P., Holst J. J. Differential effects of secretin-fragments imply a dual mechanism of action for secretin. Int J Pept Protein Res. 1991 Feb;37(2):134–139. doi: 10.1111/j.1399-3011.1991.tb00093.x. [DOI] [PubMed] [Google Scholar]
- Kopin A. S., Wheeler M. B., Leiter A. B. Secretin: structure of the precursor and tissue distribution of the mRNA. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2299–2303. doi: 10.1073/pnas.87.6.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopin A. S., Wheeler M. B., Nishitani J., McBride E. W., Chang T. M., Chey W. Y., Leiter A. B. The secretin gene: evolutionary history, alternative splicing, and developmental regulation. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5335–5339. doi: 10.1073/pnas.88.12.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lan M. S., Kajiyama W., Donadel G., Lu J., Notkins A. L. cDNA sequence and genomic organization of mouse secretin. Biochem Biophys Res Commun. 1994 Apr 29;200(2):1066–1071. doi: 10.1006/bbrc.1994.1558. [DOI] [PubMed] [Google Scholar]
- Lee J. Y., Boman A., Sun C. X., Andersson M., Jörnvall H., Mutt V., Boman H. G. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9159–9162. doi: 10.1073/pnas.86.23.9159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mutt V., Carlquist M., Tatemoto K. Secretin-like bioactivity in extracts of porcine brain. Life Sci. 1979 Nov 12;25(20):1703–1707. doi: 10.1016/0024-3205(79)90472-7. [DOI] [PubMed] [Google Scholar]
- Mutt V., Jorpes J. E., Magnusson S. Structure of porcine secretin. The amino acid sequence. Eur J Biochem. 1970 Sep;15(3):513–519. doi: 10.1111/j.1432-1033.1970.tb01034.x. [DOI] [PubMed] [Google Scholar]
- Polak J. M., Bloom S., Coulling I., Pearse A. G. Immunofluorescent localization of secretin in the canine duodenum. Gut. 1971 Aug;12(8):605–610. doi: 10.1136/gut.12.8.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polak J. M., Coulling I., Bloom S., Pearse A. G. Immunofluorescent localization of secretin and enteroglucagon in human intestinal mucosa. Scand J Gastroenterol. 1971;6(8):739–744. doi: 10.3109/00365527109179946. [DOI] [PubMed] [Google Scholar]
- Said S. I., Mutt V. Isolation from porcine-intestinal wall of a vasoactive octacosapeptide related to secretin and to glucagon. Eur J Biochem. 1972 Jul 13;28(2):199–204. doi: 10.1111/j.1432-1033.1972.tb01903.x. [DOI] [PubMed] [Google Scholar]
- Sillard R., Jörnvall H., Mutt V. Characterization of porcine intestinal cytochrome c oxidase subunit VIIc, purified by affinity chromatography. Biochem Biophys Res Commun. 1993 Sep 15;195(2):746–750. doi: 10.1006/bbrc.1993.2108. [DOI] [PubMed] [Google Scholar]
- Sillard R., Rökaeus A., Xu Y., Carlquist M., Bergman T., Jörnvall H., Mutt V. Variant forms of galanin isolated from porcine brain. Peptides. 1992 Nov-Dec;13(6):1055–1060. doi: 10.1016/0196-9781(92)90005-n. [DOI] [PubMed] [Google Scholar]
- Wheeler M. B., Nishitani J., Buchan A. M., Kopin A. S., Chey W. Y., Chang T. M., Leiter A. B. Identification of a transcriptional enhancer important for enteroendocrine and pancreatic islet cell-specific expression of the secretin gene. Mol Cell Biol. 1992 Aug;12(8):3531–3539. doi: 10.1128/mcb.12.8.3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]