Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964

Rotation of subunits during catalysis by Escherichia coli F1-ATPase.

T M Duncan 1, V V Bulygin 1, Y Zhou 1, M L Hutcheon 1, R L Cross 1
PMCID: PMC40551  PMID: 7479919

Abstract

During oxidative and photo-phosphorylation, F0F1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F0F1. Guided by a recent, high-resolution structure for bovine F1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central gamma subunit relative to the three catalytic beta subunits in soluble F1 from Escherichia coli. In the bovine F1 structure, a specific point of contact between the gamma subunit and one of the three catalytic beta subunits includes positioning of the homolog of E. coli gamma-subunit C87 (gamma C87) close to the beta-subunit 380DELSEED386 sequence. A beta D380C mutation allowed us to induce formation of a specific disulfide bond between beta and gamma C87 in soluble E. coli F1. Formation of the crosslink inactivated beta D380C-F1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked beta D380C-F1, we incorporated radiolabeled beta subunits into the two noncrosslinked beta-subunit positions of F1. After reduction of the initial nonradioactive beta-gamma crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled beta subunits with gamma C87 upon reoxidation. The results demonstrate that gamma subunit rotates relative to the beta subunits during catalysis.

Full text

PDF
10964

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Aggeler R., Haughton M. A., Capaldi R. A. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. J Biol Chem. 1995 Apr 21;270(16):9185–9191. doi: 10.1074/jbc.270.16.9185. [DOI] [PubMed] [Google Scholar]
  3. Boyer P. D. A perspective of the binding change mechanism for ATP synthesis. FASEB J. 1989 Aug;3(10):2164–2178. doi: 10.1096/fasebj.3.10.2526771. [DOI] [PubMed] [Google Scholar]
  4. Boyer P. D., Cross R. L., Momsen W. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2837–2839. doi: 10.1073/pnas.70.10.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyer P. D. The binding change mechanism for ATP synthase--some probabilities and possibilities. Biochim Biophys Acta. 1993 Jan 8;1140(3):215–250. doi: 10.1016/0005-2728(93)90063-l. [DOI] [PubMed] [Google Scholar]
  6. Duncan T. M., Zhou Y., Bulygin V. V., Hutcheon M. L., Cross R. L. Probing interactions of the Escherichia coli F0F1 ATP synthase beta and gamma subunits with disulphide cross-links. Biochem Soc Trans. 1995 Nov;23(4):736–741. doi: 10.1042/bst0230736. [DOI] [PubMed] [Google Scholar]
  7. Gogol E. P., Johnston E., Aggeler R., Capaldi R. A. Ligand-dependent structural variations in Escherichia coli F1 ATPase revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9585–9589. doi: 10.1073/pnas.87.24.9585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kandpal R. P., Boyer P. D. Escherichia coli F1 ATPase is reversibly inhibited by intra- and intersubunit crosslinking: an approach to assess rotational catalysis. Biochim Biophys Acta. 1987 Jan 16;890(1):97–105. doi: 10.1016/0005-2728(87)90073-9. [DOI] [PubMed] [Google Scholar]
  9. Kayalar C., Rosing J., Boyer P. D. An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem. 1977 Apr 25;252(8):2486–2491. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lightowlers R. N., Howitt S. M., Hatch L., Gibson F., Cox G. The proton pore in the Escherichia coli F0F1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents F0-mediated proton permeability. Biochim Biophys Acta. 1988 Apr 22;933(2):241–248. doi: 10.1016/0005-2728(88)90031-x. [DOI] [PubMed] [Google Scholar]
  12. Moradi-Améli M., Godinot C. The rotation of the alpha subunit of F1 relative to minor subunits is not involved in ATP synthesis. Evidence given by using an anti-alpha subunit monoclonal antibody. Biochim Biophys Acta. 1988 Jul 6;934(2):269–273. doi: 10.1016/0005-2728(88)90191-0. [DOI] [PubMed] [Google Scholar]
  13. Musier-Forsyth K. M., Hammes G. G. Rotational dynamics of chloroplast ATP synthase in phospholipid vesicles. Biochemistry. 1990 Apr 3;29(13):3236–3241. doi: 10.1021/bi00465a014. [DOI] [PubMed] [Google Scholar]
  14. Musier K. M., Hammes G. G. Rotation of nucleotide sites is not required for the enzymatic activity of chloroplast coupling factor 1. Biochemistry. 1987 Sep 22;26(19):5982–5988. doi: 10.1021/bi00393a006. [DOI] [PubMed] [Google Scholar]
  15. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  16. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  17. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  18. Schneider E., Altendorf K. Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol Rev. 1987 Dec;51(4):477–497. doi: 10.1128/mr.51.4.477-497.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Senior A. E., Downie J. A., Cox G. B., Gibson F., Langman L., Fayle D. R. The uncA gene codes for the alpha-subunit of the adenosine triphosphatase of Escherichia coli. Electrophoretic analysis of uncA mutant strains. Biochem J. 1979 Apr 15;180(1):103–109. doi: 10.1042/bj1800103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Senior A. E., Fayle D. R., Downie J. A., Gibson F., Cox G. B. Properties of membranes from mutant strains of Escherichia coli in which the beta-subunit of the adenosine triphosphatase is abnormal. Biochem J. 1979 Apr 15;180(1):111–118. doi: 10.1042/bj1800111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Senior A. E. The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem. 1990;19:7–41. doi: 10.1146/annurev.bb.19.060190.000255. [DOI] [PubMed] [Google Scholar]
  22. Vik S. B., Antonio B. J. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem. 1994 Dec 2;269(48):30364–30369. [PubMed] [Google Scholar]
  23. Vogel G., Steinhart R. ATPase of Escherichia coli: purification, dissociation, and reconstitution of the active complex from the isolated subunits. Biochemistry. 1976 Jan 13;15(1):208–216. doi: 10.1021/bi00646a032. [DOI] [PubMed] [Google Scholar]
  24. Wang J. H., Cesana J., Wu J. C. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles. Biochemistry. 1987 Aug 25;26(17):5527–5533. doi: 10.1021/bi00391a047. [DOI] [PubMed] [Google Scholar]
  25. Wilkens S., Dunn S. D., Capaldi R. A. A cryoelectron microscopy study of the interaction of the Escherichia coli F1-ATPase with subunit b dimer. FEBS Lett. 1994 Oct 31;354(1):37–40. doi: 10.1016/0014-5793(94)01059-5. [DOI] [PubMed] [Google Scholar]
  26. Wise J. G. Site-directed mutagenesis of the conserved beta subunit tyrosine 331 of Escherichia coli ATP synthase yields catalytically active enzymes. J Biol Chem. 1990 Jun 25;265(18):10403–10409. [PubMed] [Google Scholar]
  27. Ziegler M., Xiao R., Penefsky H. S. Close proximity of Cys64 and Cys140 in the delta subunit of Escherichia coli F1-ATPase. J Biol Chem. 1994 Feb 11;269(6):4233–4239. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES