Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1970 Jun;34(2):99–125. doi: 10.1128/br.34.2.99-125.1970

Mycobactins: iron-chelating growth factors from mycobacteria.

G A Snow
PMCID: PMC408312  PMID: 4918634

Full text

PDF
101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTOINE A. D., MORRISON N. E., HANKS J. H. SPECIFICITY OF IMPROVED METHODS FOR MYCOBACTIN BIOASSAY BY ARTHROBACTER TERREGENS. J Bacteriol. 1964 Dec;88:1672–1677. doi: 10.1128/jb.88.6.1672-1677.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antoine A. D., Morrison N. E. Effect of iron nutrition on the bound hydroxylamine content of Mycobacterium phlei. J Bacteriol. 1968 Jan;95(1):245–246. doi: 10.1128/jb.95.1.245-246.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BU'LOCK J. D., SMALLEY H. M., SMITH G. N. Malonate as a biosynthetic intermediate in Penicillium urticae. J Biol Chem. 1962 Jun;237:1778–1780. [PubMed] [Google Scholar]
  4. BURNHAM B. F. Bacterial iron metabolism: investigations on the mechanism of ferrichrome function. Arch Biochem Biophys. 1962 May;97:329–335. doi: 10.1016/0003-9861(62)90085-1. [DOI] [PubMed] [Google Scholar]
  5. BURNHAM B. F., NEILANDS J. B. Studies on the metabolic function of the ferrichrome compounds. J Biol Chem. 1961 Feb;236:554–559. [PubMed] [Google Scholar]
  6. BURNHAN B. F. INVESTIGATIONS ON THE ACTION OF THE IRON-CONTAINING GROWTH FACTORS, SIDERAMINES; AND IRON-CONTAINING ANTIBIOTICS, SIDEROMYCINS. J Gen Microbiol. 1963 Jul;32:117–121. doi: 10.1099/00221287-32-1-117. [DOI] [PubMed] [Google Scholar]
  7. Bates G. W., Billups C., Saltman P. The kinetics and mechanism of iron (3) exchange between chelates and transferrin. I. The complexes of citrate and nitrilotriacetic acid. J Biol Chem. 1967 Jun 25;242(12):2810–2815. [PubMed] [Google Scholar]
  8. Bates G. W., Billups C., Saltman P. The kinetics and mechanism of iron (3) exchange between chelates and transferrin. II. The presentation and removal with ethylenediaminetetraacetate. J Biol Chem. 1967 Jun 25;242(12):2816–2821. [PubMed] [Google Scholar]
  9. Bickel H., Mertens P., Prelog V., Seibl J., Walser A. Constitution of ferrimycin A1. Antimicrob Agents Chemother (Bethesda) 1965;5:951–957. [PubMed] [Google Scholar]
  10. Brot N., Goodwin J. Regulation of 2,3-dihydroxybenzoylserine synthetase by iron. J Biol Chem. 1968 Feb 10;243(3):510–513. [PubMed] [Google Scholar]
  11. Byers B. R., Powell M. V., Lankford C. E. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol. 1967 Jan;93(1):286–294. doi: 10.1128/jb.93.1.286-294.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carpenter J. G., Moore J. W. Synthesis of an analogue of mycobactin. J Chem Soc Perkin 1. 1969;12:1610–1611. doi: 10.1039/j39690001610. [DOI] [PubMed] [Google Scholar]
  13. Collins C. H. Revised classification of anonymous mycobacteria. J Clin Pathol. 1966 Sep;19(5):433–437. doi: 10.1136/jcp.19.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Corbin J. L., Bulen W. A. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-di-92,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 1969 Mar;8(3):757–762. doi: 10.1021/bi00831a002. [DOI] [PubMed] [Google Scholar]
  15. Dalziel K., Dickinson F. M. The kinetics and mechanism of liver alcohol dehydrogenase with primary and secondary alcohols as substrates. Biochem J. 1966 Jul;100(1):34–46. doi: 10.1042/bj1000034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Diekmann H., Zähner H. Konstitution von Fusigen und dessen Abbau zu delta-2-Anhydromevalonsäurelacton. Eur J Biochem. 1967 Dec;3(2):213–218. doi: 10.1111/j.1432-1033.1967.tb19518.x. [DOI] [PubMed] [Google Scholar]
  17. Emery T. F. Initial steps in the biosynthesis of ferrichrome. Incorporation of delta-N-hydroxyornithine and delta-N-acetyl-delta-N-hydroxyornithine. Biochemistry. 1966 Nov;5(11):3694–3701. doi: 10.1021/bi00875a045. [DOI] [PubMed] [Google Scholar]
  18. FRANCIS J., MACTURK H. M., MADINAVEITIA J., SNOW G. A. Mycobactin, a growth factor for Mycobacterium johnei. I. Isolation from Mycobacterium phlei. Biochem J. 1953 Nov;55(4):596–607. doi: 10.1042/bj0550596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. GARIBALDI J. A., NEILANDS J. B. Formation of iron-binding compounds by micro-organisms. Nature. 1956 Mar 17;177(4507):526–527. doi: 10.1038/177526a0. [DOI] [PubMed] [Google Scholar]
  20. Gibson F., Magrath D. I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta. 1969 Nov 18;192(2):175–184. doi: 10.1016/0304-4165(69)90353-5. [DOI] [PubMed] [Google Scholar]
  21. Gordon R. E. Some strains in search of a genus--Corynebacterium, Mycobacterium, Nocardia or what? J Gen Microbiol. 1966 Jun;43(3):329–343. doi: 10.1099/00221287-43-3-329. [DOI] [PubMed] [Google Scholar]
  22. Greatbanks D., Bedford G. R. Identification of mycobactins by nuclear-magnetic-resonance spectroscopy. Biochem J. 1969 Dec;115(5):1047–1050. doi: 10.1042/bj1151047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. HART P. D. A mycobactin-containing liquid medium for the study of Mycobacterium johnei. J Pathol Bacteriol. 1958 Jul;76(1):205–210. doi: 10.1002/path.1700760123. [DOI] [PubMed] [Google Scholar]
  24. Hanks J. H. Host-dependent microbes. Bacteriol Rev. 1966 Mar;30(1):114–135. doi: 10.1128/br.30.1.114-135.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jenkins P. A. Lipid analysis in the classification of mycobacteria. Tubercle. 1969 Mar;50(Suppl):83–84. [PubMed] [Google Scholar]
  26. KAPLAN L., REILLY H. C., STOCK C. C. Action of azaserine on Escherichia coli. J Bacteriol. 1959 Oct;78:511–519. doi: 10.1128/jb.78.4.511-519.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Knüsel F., Nüesch J. Mechanism of action of sideromycins. Nature. 1965 May 15;206(985):674–676. doi: 10.1038/206674a0. [DOI] [PubMed] [Google Scholar]
  28. Knüsel F., Nüesch J., Scherrer M., Schiess B. Der Einfluss von Siderochromen auf die Inkorporation niedermolekularer Substanzen in Ganzzellen von Bakterien. Pathol Microbiol (Basel) 1967;30(6):900–908. [PubMed] [Google Scholar]
  29. Knüsel F., Nüesch J., Treichler H. J. Siderochrome und Eisenstoffwechsel bei Mikroorganismen. Naturwissenschaften. 1967 May;54(10):242–247. doi: 10.1007/BF00602138. [DOI] [PubMed] [Google Scholar]
  30. Knüsel F., Schiess B., Zimmermann W. The influence exerted by Sideromycins on Poly-U-directed incorporation of phenylalanine in the S-30 fraction of Staphylococcus aureus. Arch Mikrobiol. 1969 Oct;68(2):99–106. doi: 10.1007/BF00413869. [DOI] [PubMed] [Google Scholar]
  31. LOCHEAD A. G., BURTON M. O., THEXTON R. H. A bacterial growth-factor synthesized by a soil bacterium. Nature. 1952 Aug 16;170(4320):282–282. doi: 10.1038/170282a0. [DOI] [PubMed] [Google Scholar]
  32. MARKS J. A growth factor for Mycobacterium tuberculosis. J Pathol Bacteriol. 1953 Jul;66(1):151–155. doi: 10.1002/path.1700660119. [DOI] [PubMed] [Google Scholar]
  33. MARKS J. The Mycobacterium tuberculosis growth factor. J Pathol Bacteriol. 1954 Jan;67(1):254–256. doi: 10.1002/path.1700670132. [DOI] [PubMed] [Google Scholar]
  34. MORRISON N. E., ANTOINE A. D., DEWBREY E. E. SYNTHETIC METAL CHELATORS WHICH REPLACE THE NATURAL GROWTH-FACTOR REQUIREMENTS OF ARTHROBACTER TERREGENS. J Bacteriol. 1965 Jun;89:1630–1630. doi: 10.1128/jb.89.6.1630-1630.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. MORRISON N. E. CIRCUMVENTION OF THE MYCOBACTIN REQUIREMENT OF MYCOBACTERIUM PARATUBERCULOSIS. J Bacteriol. 1965 Mar;89:762–767. doi: 10.1128/jb.89.3.762-767.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Maurer B., Müller A., Keller-Schierlein W., Zähner H. Stoffwechselprodukte von Mikroorganismen. 61. Ferribactin, ein Siderochrom aus Pseudomonas fluorescens Migula. Arch Mikrobiol. 1968;60(4):326–339. [PubMed] [Google Scholar]
  37. Morrison N. E., Dewbrey E. E. Growth factor activity of mycobactin for Arthrobacter species. J Bacteriol. 1966 Dec;92(6):1848–1849. doi: 10.1128/jb.92.6.1848-1849.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Müller A., Zähner H. Stoffwechselprodukte von Mikroorganismen. 65. Ferrioxamine aus Eubacteriales. Arch Mikrobiol. 1968;62(3):257–263. [PubMed] [Google Scholar]
  39. NEILANDS J. B. Some aspects of microbial iron metabolism. Bacteriol Rev. 1957 Jun;21(2):101–111. doi: 10.1128/br.21.2.101-111.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Neilands J. B. Hydroxamic acids in nature. Science. 1967 Jun 16;156(3781):1443–1447. doi: 10.1126/science.156.3781.1443. [DOI] [PubMed] [Google Scholar]
  41. Peters W. J., Warren R. A. Itoic acid synthesis in Bacillus subtilis. J Bacteriol. 1968 Feb;95(2):360–366. doi: 10.1128/jb.95.2.360-366.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Peters W. J., Warren R. A. Phenolic acids and iron transport in Bacillus subtilis. Biochim Biophys Acta. 1968 Sep 3;165(2):225–232. doi: 10.1016/0304-4165(68)90050-0. [DOI] [PubMed] [Google Scholar]
  43. RATLEDGE C. RELATIONSHIP BETWEEN THE PRODUCTS OF AROMATIC BIOSYNTHESIS IN MYCOBACTERIUM SMEGMATIS AND AEROBACTER AEROGENES. Nature. 1964 Jul 25;203:428–429. doi: 10.1038/203428a0. [DOI] [PubMed] [Google Scholar]
  44. RATLEDGE C., WINDER F. G. The accumulation of salicylic acid by mycobacteria during growth on an iron-deficient medium. Biochem J. 1962 Sep;84:501–506. doi: 10.1042/bj0840501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. REICH C. V., HANKS J. H. USE OF ARTHROBACTER TERREGENS FOR BIOASSAY OF MYCOBACTIN. J Bacteriol. 1964 Jun;87:1317–1320. doi: 10.1128/jb.87.6.1317-1320.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. ROGERS S., NEILANDS J. B. SYNTHETIC EXPERIMENTS IN THE FERRICHROME SERIES. Biochemistry. 1964 Dec;3:1850–1855. doi: 10.1021/bi00900a010. [DOI] [PubMed] [Google Scholar]
  47. Ratledge C. Some factors influencing mycobactin and salicylic acid production in Mycobacterium smegmatis. Biochem J. 1968 Nov;110(2):23P–23P. doi: 10.1042/bj1100023p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ratledge C. The biosynthesis of salicylic acid in Mycobacterium smegmatis via the shikimic acid pathway. Biochim Biophys Acta. 1969 Oct 7;192(1):148–150. doi: 10.1016/0304-4165(69)90023-3. [DOI] [PubMed] [Google Scholar]
  49. Ratledge C., Winder F. G. Biosynthesis and utilization of aromatic compounds by Mycobacterium smegmatis with particular reference to the origin of salicylic acid. Biochem J. 1966 Nov;101(2):274–283. doi: 10.1042/bj1010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Reiner E., Beam R. E., Kubica G. P. A rapid chemotaxonomic method for distinguishing mycobacterial strains. J Chromatogr. 1967 Apr;27(2):495–496. doi: 10.1016/s0021-9673(01)85910-0. [DOI] [PubMed] [Google Scholar]
  51. SMITH H. W. Source of the phlei growth factor for Mycobacterium johnei. Nature. 1955 Jan 1;175(4444):40–41. doi: 10.1038/175040a0. [DOI] [PubMed] [Google Scholar]
  52. SNOW G. A. THE STRUCTURE OF MYCOBACTIN P, A GROWTH FACTOR FOR MYCOBACTERIUM JOHNEI, AND THE SIGNIFICANCE OF ITS IRON COMPLEX. Biochem J. 1965 Jan;94:160–165. doi: 10.1042/bj0940160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sayer J. M., Emery T. F. Structures of the naturally occurring hydroxamic acids, fusarinines A and B. Biochemistry. 1968 Jan;7(1):184–190. doi: 10.1021/bi00841a023. [DOI] [PubMed] [Google Scholar]
  54. Snow G. A. Isolation and structure of mycobactin T, a growth factor from Mycobacterium tuberculosis. Biochem J. 1965 Oct;97(1):166–175. doi: 10.1042/bj0970166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Snow G. A. Metal complexes of mycobactin P and of desferrisideramines. Biochem J. 1969 Nov;115(2):199–205. doi: 10.1042/bj1150199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Snow G. A., White A. J. Chemical and biological properties of mycobactins isolated from various mycobacteria. Biochem J. 1969 Dec;115(5):1031–1050. doi: 10.1042/bj1151031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Stanford J. L., Beck A. An antigenic analysis of the mycobacteria, Mycobacterium fortuitum, Myco. kansasii, Myco. phlei, Myco. smegmatis and Myco. tuberculosis. J Pathol Bacteriol. 1968 Jan;95(1):131–139. doi: 10.1002/path.1700950116. [DOI] [PubMed] [Google Scholar]
  58. Szulga T., Jenkins P. A., Marks J. Thin-layer chromatography of mycobacterial lipids as an aid to classification; Mycobacterium kansasii; and Mycobacterium marinum (balnei). Tubercle. 1966 Mar;47(1):130–136. doi: 10.1016/s0041-3879(66)80055-7. [DOI] [PubMed] [Google Scholar]
  59. Tsukamura M. Identification of group II scotochromogens and group 3 non-photochromogens of mycobacteria. Tubercle. 1969 Mar;50(1):51–60. doi: 10.1016/0041-3879(69)90007-5. [DOI] [PubMed] [Google Scholar]
  60. Tsukamura M. Identification of mycobacteria. Tubercle. 1967 Dec;48(4):311–338. doi: 10.1016/s0041-3879(67)80040-0. [DOI] [PubMed] [Google Scholar]
  61. Tsukamura M., Mizuno S., Tsukamura S. Numerical classification of slowly growing mycobacteria. Am Rev Respir Dis. 1969 Feb;99(2):299–303. doi: 10.1164/arrd.1969.99.2.299. [DOI] [PubMed] [Google Scholar]
  62. WHEELER W. C., HANKS J. H. UTILIZATION OF EXTERNAL GROWTH FACTORS BY INTRACELLULAR MICROBES: MYCOBACTERIUM PARATUBERCULOSIS AND WOOD PIGEON MYCOBACTERIA. J Bacteriol. 1965 Mar;89:889–896. doi: 10.1128/jb.89.3.889-896.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wang C. C., Newton A. Iron transport in Escherichia coli: relationship between chromium sensitivity and high iron requirement in mutants of Escherichia coli. J Bacteriol. 1969 Jun;98(3):1135–1141. doi: 10.1128/jb.98.3.1135-1141.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wang C. C., Newton A. Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine. J Bacteriol. 1969 Jun;98(3):1142–1150. doi: 10.1128/jb.98.3.1142-1150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wayne L. G. Selection of characters for an Adansonian analysis of mycobacterial taxonomy. J Bacteriol. 1967 Apr;93(4):1382–1391. doi: 10.1128/jb.93.4.1382-1391.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wheather D. W., Snow G. A. Assay of the mycobactins by measurement of the growth of Mycobacterium johnei. Biochem J. 1966 Jul;100(1):47–49. doi: 10.1042/bj1000047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. White A. J., Snow G. A. Isolation of mycobactinss from various mycobacteria. The properties of mycobactin S and H. Biochem J. 1969 Mar;111(5):785–792. doi: 10.1042/bj1110785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. White A. J., Snow G. A. Methods for the separation and identification of mycobactins from various species of mycobacteria. Biochem J. 1968 Jul;108(4):593–597. doi: 10.1042/bj1080593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Young I. G., Batterham T. J., Gibson F. The isolation, identification and properties of isochorismic acid. An intermediate in the biosynthesis of 2,3-dihydroxybenzoic acid. Biochim Biophys Acta. 1969 May 6;177(3):389–400. doi: 10.1016/0304-4165(69)90301-8. [DOI] [PubMed] [Google Scholar]
  70. Young I. G., Cox G. B., Gibson F. 2,3-Dihydroxybenzoate as a bacterial growth factor and its route of biosynthesis. Biochim Biophys Acta. 1967 Jul 25;141(2):319–331. doi: 10.1016/0304-4165(67)90106-7. [DOI] [PubMed] [Google Scholar]
  71. Young I. G., Gibson F. Regulation of the enzymes involved in the biosynthesis of 2,3-dihydroxybenzoic acid in Aerobacter aerogenes and Escherichia coli. Biochim Biophys Acta. 1969 May 6;177(3):401–411. doi: 10.1016/0304-4165(69)90302-x. [DOI] [PubMed] [Google Scholar]
  72. Young I. G., Jackman L. M., Gibson F. The isolation, identification and properties of 2,3-dihydro-2,3-dihydroxybenzoic acid. An intermediate in the biosynthesis of 2,3-dihydroxybenzoic acid. Biochim Biophys Acta. 1969 May 6;177(3):381–388. doi: 10.1016/0304-4165(69)90300-6. [DOI] [PubMed] [Google Scholar]
  73. ZAEHNER H., HUETTER R., BACHMANN E. [Metabolites of Actinomycetes. Part 23. On a study of the effect of sideromycin]. Arch Mikrobiol. 1960;36:325–349. [PubMed] [Google Scholar]
  74. ZAEHNER H., von BACHMANN M., HUETTER R., NUESCH J. [Sideramines, iron-containing growth factors from micro-organisms]. Pathol Microbiol (Basel) 1962;25:708–736. [PubMed] [Google Scholar]
  75. ZYGMUNT W. A. ANTAGONISM OF D-CYCLOSERINE INHIBITION OF MYCOBACTERIAL GROWTH BY D-ALANINE. J Bacteriol. 1963 Jun;85:1217–1220. doi: 10.1128/jb.85.6.1217-1220.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Zalkin A., Forrester J. D., Templeton D. H. Ferrichrome-A tetrahydrate. Determination of crystal and molecular structure. J Am Chem Soc. 1966 Apr 20;88(8):1810–1814. doi: 10.1021/ja00960a040. [DOI] [PubMed] [Google Scholar]
  77. Zimmermann W., Knüsel F. Permeability of Staphylococcus aureus to the Sideromycin antibiotic A 22,765. Arch Mikrobiol. 1969 Oct;68(2):107–112. doi: 10.1007/BF00413870. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES