Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1972 Jun;36(2):231–260. doi: 10.1128/br.36.2.231-260.1972

Dinitrogen (N 2 ) fixation (with a biochemical emphasis).

H Dalton, L E Mortenson
PMCID: PMC408324  PMID: 4557168

Full text

PDF
235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOMSTROM D. C., KNIGHT E., Jr, PHILLIPS W. D., WEIHER J. F. THE NATURE OF IRON IN FERREDOXIN. Proc Natl Acad Sci U S A. 1964 Jun;51:1085–1092. doi: 10.1073/pnas.51.6.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BULEN W. A., BURNS R. C., LECOMTE J. R. NITROGEN FIXATION: HYDROSULFITE AS ELECTRON DONOR WITH CELL-FREE PREPARATIONS OF AZOTOBACTER VINELANDII AND RHODOSPIRILLUM RUBRUM. Proc Natl Acad Sci U S A. 1965 Mar;53:532–539. doi: 10.1073/pnas.53.3.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benemann J. R., Yoch D. C., Valentine R. C., Arnon D. I. The electron transport system in nitrogen fixation by Azotobacter. I. Azotoflavin as an electron carrier. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1079–1086. doi: 10.1073/pnas.64.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergersen F. J., Hipsley E. H. The presence of N2-fixing bacteria in the intestines of man and animals. J Gen Microbiol. 1970 Jan;60(1):61–65. doi: 10.1099/00221287-60-1-61. [DOI] [PubMed] [Google Scholar]
  5. Bergersen F. J., Turner G. L. Gel filtration of nitrogenase from soybean root-nodule bacteroids. Biochim Biophys Acta. 1970 Jul 27;214(1):28–36. doi: 10.1016/0005-2795(70)90066-8. [DOI] [PubMed] [Google Scholar]
  6. Biggins D. R., Kelly M. Interaction of nitrogenase from Klebsiella pneumoniae with ATP or cyanide. Biochim Biophys Acta. 1970;205(2):288–299. doi: 10.1016/0005-2728(70)90258-6. [DOI] [PubMed] [Google Scholar]
  7. Biggins D. R., Kelly M., Postgate J. R. Resolution of nitrogenase of Mycobacterium flavum 30l into two components and cross reaction with nitrogenase components from other bacteria. Eur J Biochem. 1971 May 11;20(1):140–143. doi: 10.1111/j.1432-1033.1971.tb01371.x. [DOI] [PubMed] [Google Scholar]
  8. Biggins D. R., Postgate J. R. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J Gen Microbiol. 1969 May;56(2):181–193. doi: 10.1099/00221287-56-2-181. [DOI] [PubMed] [Google Scholar]
  9. Bui P. T., Mortenson L. E. Mechanism of the enzymic reduction of N2: the binding of adenosine 5'-triphosphate and cyanide to the N2-reducing system. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1021–1027. doi: 10.1073/pnas.61.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bui P. T., Mortenson L. E. The hydrolysis of adenosine triphosphate by purified components of nitrogenase. Biochemistry. 1969 Jun;8(6):2462–2465. doi: 10.1021/bi00834a031. [DOI] [PubMed] [Google Scholar]
  11. Bulen W. A., Burns R. C., LeComte J. R. Nitrogen fixation: cell-free system with extracts of Azotobacter. Biochem Biophys Res Commun. 1964 Oct 14;17(3):265–271. doi: 10.1016/0006-291x(64)90395-x. [DOI] [PubMed] [Google Scholar]
  12. Bulen W. A., LeComte J. R. The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proc Natl Acad Sci U S A. 1966 Sep;56(3):979–986. doi: 10.1073/pnas.56.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Burns R. C., Holsten R. D., Hardy R. W. Isolation by crystallization of the Mo-Fe protein of Azotobacter nitrogenase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):90–99. doi: 10.1016/0006-291x(70)90762-x. [DOI] [PubMed] [Google Scholar]
  14. Burns R. C. The nitrogenase system from Azotobacter: activation energy and divalent cation requirement. Biochim Biophys Acta. 1969 Feb 11;171(2):253–259. doi: 10.1016/0005-2744(69)90158-2. [DOI] [PubMed] [Google Scholar]
  15. Burris R. H. Progress in the biochemistry of nitrogen fixation. Proc R Soc Lond B Biol Sci. 1969 Apr 1;172(1029):339–354. doi: 10.1098/rspb.1969.0025. [DOI] [PubMed] [Google Scholar]
  16. CARNAHAN J. E., MORTENSON L. E., MOWER H. F., CASTLE J. E. Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim Biophys Acta. 1960 Nov 18;44:520–535. doi: 10.1016/0006-3002(60)91606-1. [DOI] [PubMed] [Google Scholar]
  17. CENTIFANTO Y. M., SILVER W. S. LEAF-NODULE SYMBIOSIS. I. ENDOPHYTE OF PSYCHOTRIA BACTERIOPHILA. J Bacteriol. 1964 Sep;88:776–781. doi: 10.1128/jb.88.3.776-781.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. COX R. M., FAY P., FOGG G. E. NITROGEN FIXATION AND PHOTOSYNTHESIS IN A SUBCELLULAR FRACTION OF THE BLUE-GREEN ALGA ANABAENA CYLINDRICA. Biochim Biophys Acta. 1964 Jul 29;88:208–210. doi: 10.1016/0926-6577(64)90168-8. [DOI] [PubMed] [Google Scholar]
  19. Chatt J., Dilworth J. R., Richards R. L., Sanders J. R. Chemical evidence concerning the function of molybdenum in nitrogenase. Nature. 1969 Dec 20;224(5225):1201–1202. doi: 10.1038/2241201a0. [DOI] [PubMed] [Google Scholar]
  20. Chatt J. Recent developments in the chemistry of nitrogen fixation. Proc R Soc Lond B Biol Sci. 1969 Apr 1;172(1029):327–337. doi: 10.1098/rspb.1969.0024. [DOI] [PubMed] [Google Scholar]
  21. Daesch G., Mortenson L. E. Effect of ammonia on the synthesis and function of the N 2 -fixing enzyme system in Clostridium pasteurianum. J Bacteriol. 1972 Apr;110(1):103–109. doi: 10.1128/jb.110.1.103-109.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Daesch G., Mortenson L. E. Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J Bacteriol. 1968 Aug;96(2):346–351. doi: 10.1128/jb.96.2.346-351.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dahlen J. V., Parejko R. A., Wilson P. W. Complementary functioning of two components from nitrogen-fixing bacteria. J Bacteriol. 1969 Apr;98(1):325–326. doi: 10.1128/jb.98.1.325-326.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Dalton H., Morris J. A., Ward M. A., Mortenson L. E. Purification and some properties of molybdoferredoxin, a component of nitrogenase from Clostridium pasteurianum. Biochemistry. 1971 May 25;10(11):2066–2072. doi: 10.1021/bi00787a016. [DOI] [PubMed] [Google Scholar]
  25. Dalton H., Postgate J. R. Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. J Gen Microbiol. 1968 Dec;54(3):463–473. doi: 10.1099/00221287-54-3-463. [DOI] [PubMed] [Google Scholar]
  26. Dalton H., Postgate J. R. Growth and physiology of Azotobacter chroococcum in continuous culture. J Gen Microbiol. 1969 Jun;56(3):307–319. doi: 10.1099/00221287-56-3-307. [DOI] [PubMed] [Google Scholar]
  27. Detroy R. W., Witz D. F., Parejko R. A., Wilson P. W. Complementary functioning of two components required for the reduction of n2 from four nitrogen-fixing bacteria. Science. 1967 Oct 27;158(3800):526–527. doi: 10.1126/science.158.3800.526-c. [DOI] [PubMed] [Google Scholar]
  28. Detroy R. W., Witz D. F., Parejko R. A., Wilson P. W. Reduction of N2 by complementary functioning of two components from nitrogen-fixing bacteria. Proc Natl Acad Sci U S A. 1968 Oct;61(2):537–541. doi: 10.1073/pnas.61.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dilworth M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta. 1966 Oct 31;127(2):285–294. doi: 10.1016/0304-4165(66)90383-7. [DOI] [PubMed] [Google Scholar]
  30. Dilworth M. J., Subramanian D., Munson T. O., Burris R. H. The adenosine triphosphate requirement for nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim Biophys Acta. 1965 Jun 22;99(3):486–503. doi: 10.1016/s0926-6593(65)80202-8. [DOI] [PubMed] [Google Scholar]
  31. Dixon R. A., Postgate J. R. Transfer of nitrogen-fixation genes by conjugation in Klebsiella pneumoniae. Nature. 1971 Nov 5;234(5323):47–48. doi: 10.1038/234047a0. [DOI] [PubMed] [Google Scholar]
  32. Drozd J., Postgate J. R. Interference by oxygen in the acetylene-reduction test for aerobic nitrogen-fixing bacteria. J Gen Microbiol. 1970 Mar;60(3):427–429. doi: 10.1099/00221287-60-3-427. [DOI] [PubMed] [Google Scholar]
  33. Evans M. C.W., Telfer Alison, Cammack R., Smith R. V. EPR studies of nitrogenase: ATP dependent oxidation of fraction 1 protein by cyanide. FEBS Lett. 1971 Jul 1;15(4):317–319. doi: 10.1016/0014-5793(71)80647-6. [DOI] [PubMed] [Google Scholar]
  34. Fay P., Cox R. M. Oxygen inhibition of nitrogen fixation in cell-free preparations of blue-green algae. Biochim Biophys Acta. 1967;143(3):562–569. doi: 10.1016/0005-2728(67)90061-8. [DOI] [PubMed] [Google Scholar]
  35. Fay P., Stewart W. D., Walsby A. E., Fogg G. E. Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature. 1968 Nov 23;220(5169):810–812. doi: 10.1038/220810b0. [DOI] [PubMed] [Google Scholar]
  36. Fisher R. J., Brill W. J. Mutants of Azotobacter vinelandii unable to fix nitrogen. Biochim Biophys Acta. 1969 Jun 17;184(1):99–105. doi: 10.1016/0304-4165(69)90103-2. [DOI] [PubMed] [Google Scholar]
  37. HOCH G. E., SCHNEIDER K. C., BURRIS R. H. Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules. Biochim Biophys Acta. 1960 Jan 15;37:273–279. doi: 10.1016/0006-3002(60)90234-1. [DOI] [PubMed] [Google Scholar]
  38. Hall D. O., Evans M. C. Iron-sulphur proteins. Nature. 1969 Sep 27;223(5213):1342–1348. doi: 10.1038/2231342a0. [DOI] [PubMed] [Google Scholar]
  39. Hardy R. W., Knight E., Jr ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim Biophys Acta. 1967 May 16;139(1):69–90. doi: 10.1016/0005-2744(67)90114-3. [DOI] [PubMed] [Google Scholar]
  40. Hardy R. W., Knight E., Jr Reduction of N2O by biological N2-fixing systems. Biochem Biophys Res Commun. 1966 May 25;23(4):409–414. doi: 10.1016/0006-291x(66)90742-x. [DOI] [PubMed] [Google Scholar]
  41. Howard D. L., Frea J. I., Pfister R. M., Dugan P. R. Biological nitrogen fixation in Lake Erie. Science. 1970 Jul 3;169(3940):61–62. doi: 10.1126/science.169.3940.61. [DOI] [PubMed] [Google Scholar]
  42. Jackson E. K., Parshall G. W., Hardy R. W. Hydrogen reactions of nitrogenase. Formation of the molecule HD by nitrogenase and by an inorganic model. J Biol Chem. 1968 Oct 10;243(19):4952–4958. [PubMed] [Google Scholar]
  43. Jeng D. Y., Devanathan T., Mortenson L. E. Components of cell-free extracts of clostridium pasteurianum W5 required for acetylene reduction and N2 fixation. Biochem Biophys Res Commun. 1969 Jun 6;35(5):625–633. doi: 10.1016/0006-291x(69)90450-1. [DOI] [PubMed] [Google Scholar]
  44. Jeng D. Y., Morris J. A., Mortenson L. E. The effect of reductant in inorganic phosphate release from adenosine 5'-triphosphate by purified nitrogenase of Clostridium pasteurianum. J Biol Chem. 1970 Jun 10;245(11):2809–2813. [PubMed] [Google Scholar]
  45. Kajiyama S., Matsuki T., Nosoh Y. Separation of the nitrogenase system of azotobacter into three components and purification of one of the components. Biochem Biophys Res Commun. 1969 Nov 6;37(4):711–717. doi: 10.1016/0006-291x(69)90869-9. [DOI] [PubMed] [Google Scholar]
  46. Kelly M. Comparisons and cross reactions of nitrogenase from Klebsiella pneumoniae, Azotobacter chroococcum and Bacillus polymyxa. Biochim Biophys Acta. 1969;191(3):527–540. doi: 10.1016/0005-2744(69)90346-5. [DOI] [PubMed] [Google Scholar]
  47. Kelly M. Hydrogen-deuterium exchange reactions catalysed by nitrogenase. Biochem J. 1968 Sep;109(2):322–324. doi: 10.1042/bj1090322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kelly M., Lang G. Evidence from Mossbauer spectroscopy for the role of iron in nitrogen fixation. Biochim Biophys Acta. 1970 Nov 3;223(1):86–104. doi: 10.1016/0005-2728(70)90134-9. [DOI] [PubMed] [Google Scholar]
  49. Kelly M. Some properties of purified nitrogenase of Azotobacter chroococcum. Biochim Biophys Acta. 1969 Jan 7;171(1):9–22. doi: 10.1016/0005-2744(69)90101-6. [DOI] [PubMed] [Google Scholar]
  50. Kelly M. The kinetics of the reduction of isocyanides, acetylenes and the cyanide ion by nitrogenase preparation from Azotobacter chroococcum and the effects of inhibitors. Biochem J. 1968 Mar;107(1):1–6. doi: 10.1042/bj1070001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kennedy I. R. Kinetics of acetylene and CN- reduction by the N2-fixing system of Rhizobium lupini. Biochim Biophys Acta. 1970 Oct 27;222(1):135–144. doi: 10.1016/0304-4165(70)90358-2. [DOI] [PubMed] [Google Scholar]
  52. Kennedy I. R., Morris J. A., Mortenson L. E. N2 fixation by purified components of the N2-fixing system of Clostridium pasteurianum. Biochim Biophys Acta. 1968 May 28;153(4):777–786. doi: 10.1016/0005-2728(68)90005-4. [DOI] [PubMed] [Google Scholar]
  53. Klucas R. V., Evans H. J. An electron donor system for nitrogenase-dependent acetylene reduction by extracts of soybean nodules. Plant Physiol. 1968 Sep;43(9):1458–1460. doi: 10.1104/pp.43.9.1458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Klucas R. V., Koch B., Russell S. A., Evans H. J. Purification and Some Properties of the Nitrogenase From Soybean (Glycine max Merr.) Nodules. Plant Physiol. 1968 Dec;43(12):1906–1912. doi: 10.1104/pp.43.12.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Koch B., Evans H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 1966 Dec;41(10):1748–1750. doi: 10.1104/pp.41.10.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Koch B., Evans H. J., Russell S. Properties of the nitrogenase system in cell-free extracts of bacteroids from soybean root nodules. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1343–1350. doi: 10.1073/pnas.58.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Koch B., Evans H. J., Russell S. Reduction of acetylene and nitrogen gas by breis and cell-free extracts of soybean root nodules. Plant Physiol. 1967 Mar;42(3):466–468. doi: 10.1104/pp.42.3.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Koch B., Wong P., Russell S. A., Howard R., Evans H. J. Purification and some properties of a non-haem iron protein from the bacteroids of soya-bean (Glycine max Merr) nodules. Biochem J. 1970 Aug;118(5):773–781. doi: 10.1042/bj1180773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. LOVENBERG W., BUCHANAN B. B., RABINOWITZ J. C. STUDIES ON THE CHEMICAL NATURE OF CLOSTRIDIAL FERREDOXIN. J Biol Chem. 1963 Dec;238:3899–3913. [PubMed] [Google Scholar]
  60. Lockshin A., Burris R. H. Inhibitors of nitrogen fixation in extracts from Clostridium pasteurianum. Biochim Biophys Acta. 1965 Nov 15;111(1):1–10. doi: 10.1016/0304-4165(65)90466-6. [DOI] [PubMed] [Google Scholar]
  61. MCNARY J. E., BURRIS R. H. Energy requirements for nitrogen fixation by cell-free preparations from Clostridium pasteurianum. J Bacteriol. 1962 Sep;84:598–599. doi: 10.1128/jb.84.3.598-599.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. MORTENSON L. E. FERREDOXIN AND ATP, REQUIREMENTS FOR NITROGEN FIXATION IN CELL-FREE EXTRACTS OF CLOSTRIDIUM PASTEURIANUM. Proc Natl Acad Sci U S A. 1964 Aug;52:272–279. doi: 10.1073/pnas.52.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. MORTENSON L. E. FERREDOXIN REQUIREMENT FOR NITROGEN FIXATION BY EXTRACTS OF CLOSTRIDIUM PASTEURIANUM. Biochim Biophys Acta. 1964 Mar 9;81:473–478. doi: 10.1016/0926-6569(64)90132-4. [DOI] [PubMed] [Google Scholar]
  64. MORTENSON L. E. NITROGEN FIXATION: ROLE OF FERREDOXIN IN ANAEROBIC METABOLISM. Annu Rev Microbiol. 1963;17:115–138. doi: 10.1146/annurev.mi.17.100163.000555. [DOI] [PubMed] [Google Scholar]
  65. MOZEN M. M., BURRIS R. H. Experiments with nitramide as a possible intermediate in biological nitrogen fixation. J Bacteriol. 1955 Jul;70(1):127–128. doi: 10.1128/jb.70.1.127-128.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Mahl M. C., Wilson P. W. Nitrogen fixation by cell-free extracts of Klebsiella penumoniae. Can J Microbiol. 1968 Jan;14(1):33–38. doi: 10.1139/m68-006. [DOI] [PubMed] [Google Scholar]
  67. Mortenson L. E. Components of cell-free extracts of Clostridium pasteurianum required for ATP-dependent H2 evolution from dithionite and for N2 fixation. Biochim Biophys Acta. 1966 Sep 26;127(1):18–25. doi: 10.1016/0304-4165(66)90470-3. [DOI] [PubMed] [Google Scholar]
  68. Mortenson L. E., Morris J. A., Jeng D. Y. Purification, metal composition and properties of molybdoferredoxin and azoferredoxin, two of the components of the nitrogen-fixing system of Clostridium pasteurianum. Biochim Biophys Acta. 1967 Aug 29;141(3):516–522. doi: 10.1016/0304-4165(67)90180-8. [DOI] [PubMed] [Google Scholar]
  69. Mortenson L. E., Mower H. F., Carnahan J. E. III. NITROGEN FIXATION BY ENZYME PREPARATIONS. Bacteriol Rev. 1962 Mar;26(1):42–50. doi: 10.1128/br.26.1.42-50.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Moustafa E., Mortenson L. E. Properties of azoferredoxin purified from nitrogen-fixing extracts of Clostridium pasteurianum. Biochim Biophys Acta. 1969 Jan 14;172(1):106–115. doi: 10.1016/0005-2728(69)90095-4. [DOI] [PubMed] [Google Scholar]
  71. Moustafa E. Purification of the cold-labile component of the Azotobacter nitrogenase. Biochim Biophys Acta. 1970 Apr 22;206(1):178–180. doi: 10.1016/0005-2744(70)90095-1. [DOI] [PubMed] [Google Scholar]
  72. Munson T. O., Burris R. H. Nitrogen fixation by Rhodospirillum rubrum grown in nitrogen-limited continuous culture. J Bacteriol. 1969 Mar;97(3):1093–1098. doi: 10.1128/jb.97.3.1093-1098.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Mustafa E., Mortenson L. E. Acetylene reduction by nitrogen fixing extracts of Clostridium pasteurianum: ATP requirement and inhibition by ADP. Nature. 1967 Dec 23;216(5121):1241–1242. doi: 10.1038/2161241a0. [DOI] [PubMed] [Google Scholar]
  74. NEWTON J. W., WILSON P. W., BURRIS R. H. Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J Biol Chem. 1953 Sep;204(1):445–451. [PubMed] [Google Scholar]
  75. Nakos G., Mortenson L. Molecular weight and subunit structure of molybdoferredoxin from Clostridium pasteurianum W5. Biochim Biophys Acta. 1971 Feb 16;229(2):431–436. doi: 10.1016/0005-2795(71)90202-9. [DOI] [PubMed] [Google Scholar]
  76. Nakos G., Mortenson L. Subunit structure of azoferredoxin from Clostridium pasteurianum W5. Biochemistry. 1971 Feb 2;10(3):455–458. doi: 10.1021/bi00779a016. [DOI] [PubMed] [Google Scholar]
  77. Newton W. E., Corbin J. L., Schneider P. W., Bulen W. A. On potential model systems for the nitrogenase enzyme. J Am Chem Soc. 1971 Jan 13;93(1):268–269. doi: 10.1021/ja00730a055. [DOI] [PubMed] [Google Scholar]
  78. Oppenheim J., Fisher R. J., Wilson P. W., Marcus L. Properties of a soluble nitrogenase in Azotobacter. J Bacteriol. 1970 Jan;101(1):292–296. doi: 10.1128/jb.101.1.292-296.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Oppenheim J., Marcus L. Correlation of ultrastructure in Azotobacter vinelandii with nitrogen source for growth. J Bacteriol. 1970 Jan;101(1):286–291. doi: 10.1128/jb.101.1.286-291.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Orme-Johnson W. H., Beinert H. On the formation of the superoxide anion radical during the reaction of reduced iron-sulfur proteins with oxygen. Biochem Biophys Res Commun. 1969 Sep 10;36(6):905–911. doi: 10.1016/0006-291x(69)90289-7. [DOI] [PubMed] [Google Scholar]
  81. PARKER C. A. Effect of oxygen on the fixation of nitrogen by Azotobacter. Nature. 1954 Apr 24;173(4408):780–781. doi: 10.1038/173780b0. [DOI] [PubMed] [Google Scholar]
  82. PARKER C. A., SCUTT P. B. Competitive inhibition of nitrogen fixation by oxygen. Biochim Biophys Acta. 1958 Sep;29(3):662–662. doi: 10.1016/0006-3002(58)90037-4. [DOI] [PubMed] [Google Scholar]
  83. PARKER C. A., SCUTT P. B. The effect of oxygen on nitrogen fixation by Azotobacter. Biochim Biophys Acta. 1960 Feb 26;38:230–238. doi: 10.1016/0006-3002(60)91236-1. [DOI] [PubMed] [Google Scholar]
  84. PENGRA R. M., WILSON P. W. Physiology of nitrogen fixation by Aerobacter aerogenes. J Bacteriol. 1958 Jan;75(1):21–25. doi: 10.1128/jb.75.1.21-25.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. SCHMIDT-LORENZ W., RIPPEL-BALDES A. Wirkung des Sauerstoff-Partialdrucks auf Wachstum und Stickstoffbindung von Azotobacter chroococcum Beij. Arch Mikrobiol. 1957;28(1):45–68. [PubMed] [Google Scholar]
  86. SHETHNA Y. I., WILSON P. W., HANSEN R. E., BEINERT H. IDENTIFICATION BY ISOTOPIC SUBSTITUTION OF THE EPR SIGNAL AT G = 1.94 IN A NON-HEME IRON PROTEIN FROM AZOTOBACTER. Proc Natl Acad Sci U S A. 1964 Nov;52:1263–1271. doi: 10.1073/pnas.52.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Schneider K. C., Bradbeer C., Singh R. N., Wang L. C., Wilson P. W., Burris R. H. NITROGEN FIXATION BY CELL-FREE PREPARATIONS FROM MICROORGANISMS. Proc Natl Acad Sci U S A. 1960 May;46(5):726–733. doi: 10.1073/pnas.46.5.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Schöllhorn R., Burris R. H. Reduction of azide by the N2-fixing enzyme system. Proc Natl Acad Sci U S A. 1967 May;57(5):1317–1323. doi: 10.1073/pnas.57.5.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Silverstein R., Bulen W. A. Kinetic studies of the nitrogense-catalyzed hydrogen volution and nitrogen reduction reactions. Biochemistry. 1970 Sep 15;9(19):3809–3815. doi: 10.1021/bi00821a021. [DOI] [PubMed] [Google Scholar]
  90. Simon M. A., Brill W. J. Mutant of Clostridium pasteurianum that does not fix nitrogen. J Bacteriol. 1971 Jan;105(1):65–69. doi: 10.1128/jb.105.1.65-69.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Smith R. V., Evans M. C. Soluble nitrogenase from vegetative cells of the blue-green alga Anabaena cylindrica. Nature. 1970 Mar 28;225(5239):1253–1254. doi: 10.1038/2251253a0. [DOI] [PubMed] [Google Scholar]
  92. Smith R. V., Noy R. J., Evans M. C. Physiological electron donor systems to the nitrogenase of the blue-green alga Anabaena cylindrica. Biochim Biophys Acta. 1971 Nov 2;253(1):104–109. doi: 10.1016/0005-2728(71)90238-6. [DOI] [PubMed] [Google Scholar]
  93. Smith R. V., Telfer A., Evans M. C. Complementary functioning of nitrogenase components from a blue-green alga and a photosynthetic bacterium. J Bacteriol. 1971 Aug;107(2):574–575. doi: 10.1128/jb.107.2.574-575.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Sorger G. J. Regulation of nitrogen fixation in Azotobacter vinelandii OP and in an apparently partially constitutive mutant. J Bacteriol. 1968 May;95(5):1721–1726. doi: 10.1128/jb.95.5.1721-1726.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Sorger G. J., Trofimenkoff D. Nitrogenaseless mutants of Azotobacter vinelandii. Proc Natl Acad Sci U S A. 1970 Jan;65(1):74–80. doi: 10.1073/pnas.65.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Stewart W. D. Biological and ecological aspects of nitrogen fixation by free-living micro-organisms. Proc R Soc Lond B Biol Sci. 1969 Apr 1;172(1029):367–388. doi: 10.1098/rspb.1969.0027. [DOI] [PubMed] [Google Scholar]
  97. Stewart W. D., Fitzgerald G. P., Burris R. H. In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2071–2078. doi: 10.1073/pnas.58.5.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Stewart W. D., Fitzgerald G. P., Burris R. H. In situ studies on nitrogen fixation with the acetylene reduction technique. Science. 1967 Oct 27;158(3800):536–536. doi: 10.1126/science.158.3800.536. [DOI] [PubMed] [Google Scholar]
  99. Stewart W. D., Haystead A., Pearson H. W. Nitrogenase activity in heterocysts of blue-green algae. Nature. 1969 Oct 18;224(5216):226–228. doi: 10.1038/224226a0. [DOI] [PubMed] [Google Scholar]
  100. Stewart W. D., Lex M. Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch Mikrobiol. 1970;73(3):250–260. doi: 10.1007/BF00410626. [DOI] [PubMed] [Google Scholar]
  101. Stewart W. D. Nitrogen-Fixing Plants: The role of biological agents as providers of combined nitrogen is discussed. Science. 1967 Dec 15;158(3807):1426–1432. doi: 10.1126/science.158.3807.1426. [DOI] [PubMed] [Google Scholar]
  102. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  103. Strandberg G. W., Wilson P. W. Molecular H2 and the PN2 function of azotobacter. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1404–1409. doi: 10.1073/pnas.58.4.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Streicher S., Gurney E., Valentine R. C. Transduction of the nitrogen-fixation genes in Klebsiella pneumoniae. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1174–1177. doi: 10.1073/pnas.68.6.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. TSCHAPEK M., GIAMBIAGI N. Nitrogen fixation of Azotobacter in soil; its inhibition by oxygen. Arch Mikrobiol. 1955;21(4):376–390. doi: 10.1007/BF00413000. [DOI] [PubMed] [Google Scholar]
  106. Taylor K. B. The enzymology of nitrogen fixation in cell-free extracts of Clostridium pasteurianum. J Biol Chem. 1969 Jan 10;244(1):171–179. [PubMed] [Google Scholar]
  107. Tonomura B., Rabinowitz J. C. An investigation of the induction of beta-galactosidase in a broken spheroplast preparation of Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):177–202. doi: 10.1016/0022-2836(67)90325-7. [DOI] [PubMed] [Google Scholar]
  108. Turner G. L., Bergersen F. J. The relationship between nitrogen fixation and the production of HD from D2 by cell-free extracts of soya-bean nodule bacteroids. Biochem J. 1969 Nov;115(3):529–535. doi: 10.1042/bj1150529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Vandecasteele J. P., Burris R. H. Purification and properties of the constituents of the nitrogenase complex from Clostridium pasteurianum. J Bacteriol. 1970 Mar;101(3):794–801. doi: 10.1128/jb.101.3.794-801.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Wilson P. W., Burris R. H. THE MECHANISM OF BIOLOGICAL NITROGEN FIXATION. Bacteriol Rev. 1947 Mar;11(1):41–73. doi: 10.1128/br.11.1.41-73.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Winter H. C., Arnon D. I. The nitrogen fixation system of photosynthetic bacteria. I. Preparation and properties of a cell-free extract from Chromatium. Biochim Biophys Acta. 1970 Mar 3;197(2):170–179. doi: 10.1016/0005-2728(70)90028-9. [DOI] [PubMed] [Google Scholar]
  112. Winter H. C., Burris R. H. Stoichiometry of the adenosine triphosphate requirement for N2 fixation and H2 evolution by a partially purified preparation of Clostridium pasteurianum. J Biol Chem. 1968 Mar 10;243(5):940–944. [PubMed] [Google Scholar]
  113. Yates M. G. Control of respiration and nitrogen fixation by oxygen and adenine nucleotides in N2-grown Azotobacter chroococcum. J Gen Microbiol. 1970 Mar;60(3):393–401. doi: 10.1099/00221287-60-3-393. [DOI] [PubMed] [Google Scholar]
  114. Yates M. G. Effect of non-haem iron proteins and cytochrome C from Azotobacter upon the activity and oxygen sensitivity of Azobacter nitrogenase. FEBS Lett. 1970 Jun 27;8(5):281–285. doi: 10.1016/0014-5793(70)80287-3. [DOI] [PubMed] [Google Scholar]
  115. Yoch D. C., Arnon D. I. The nitrogen fixation system of photosynthetic bacteria. II. Chromatium nitrogenase activity linked to photochemically generated assimilatory power. Biochim Biophys Acta. 1970 Mar 3;197(2):180–184. doi: 10.1016/0005-2728(70)90029-0. [DOI] [PubMed] [Google Scholar]
  116. Yoch D. C., Benemann J. R., Arnon D. I., Valentine R. C., Russell S. A. An endogenous electron carrier for the nitrogenase system of Rhizobium bacteroids. Biochem Biophys Res Commun. 1970 Mar 12;38(5):838–842. doi: 10.1016/0006-291x(70)90795-3. [DOI] [PubMed] [Google Scholar]
  117. Yoch D. C., Benemann J. R., Valentine R. C., Arnon D. I. The electron transport system in nitrogen fixation by Azotobacter. II. Isolation and function of a new type of ferredoxin. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1404–1410. doi: 10.1073/pnas.64.4.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Yoch D. C., Pengra R. M. Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J Bacteriol. 1966 Sep;92(3):618–622. doi: 10.1128/jb.92.3.618-622.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. ZELITCH I., ROSENBLUM E. D., BURRIS R. H., WILSON P. W. Isolation of the key intermediate in biological nitrogen fixation by Clostridium. J Biol Chem. 1951 Jul;191(1):295–298. [PubMed] [Google Scholar]
  120. Zelitch I. Simultaneous Use of Molecular Nitrogen and Ammonia by Clostridium Pasteurianum. Proc Natl Acad Sci U S A. 1951 Sep;37(9):559–565. doi: 10.1073/pnas.37.9.559. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES