Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):931–935. doi: 10.1073/pnas.75.2.931

Incomplete dosage compensation in an evolving Drosophila sex chromosome.

E Strobel, C Pelling, N Arnheim
PMCID: PMC411372  PMID: 273254

Abstract

Cellular autoradiography was used to measure relative rates of chromosomal RNA synthesis and to examine the regulatory phenomenon of X-linked dosage compensation in Drosophila miranda, a species containing two distinct, nonhomologous X chromosomes (X1 and X2). The X1 chromosome was found to be dosage-compensated, since the rate of RNA synthesis along the single X1 chromosome in males equaled that of both X1 chromosomes in females. Unlike other sex chromosomes that have been studied, the more recently evolved X2 heterochromosome exhibited regional differences in transcriptional activity when males and females were compared. The distal 10% of the X2 was not dosage-compensated, whereas the majority of an interior segment, representing 30% of the X2 chromosome's length, was found to be dosage-compensated. Our data are consistent with the idea that the evolution of X2 dosage compensation has paralleled the differentiation of the X2 sex chromosome. In addition, gene rearrangement seems to have accompanied the acquisition of a dosage-compensory mechanism in the X2.

Full text

PDF
935

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham I., Lucchesi J. C. Dosage compensation of genes on the left and right arms of the X chromosome of Drosophila pseudoobscura and Drosophila willistoni. Genetics. 1974 Dec;78(4):1119–1126. doi: 10.1093/genetics/78.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ananiev E. V., Gvozdev V. A. Changed pattern of transcription and replication in polytene chromosomes of Drosophila melanogaster resulting from eu-heterochromatin rearrangement. Chromosoma. 1974 Mar 14;45(2):173–191. doi: 10.1007/BF00362310. [DOI] [PubMed] [Google Scholar]
  3. Baker W. K. Position-effect variegation. Adv Genet. 1968;14:133–169. [PubMed] [Google Scholar]
  4. Bowman J. T., Simmons J. R. Gene modulation in Drosophila: dosage compensation of Pgd+ and Zw+ genes. Biochem Genet. 1973 Dec;10(4):319–331. doi: 10.1007/BF00485987. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee S. N., Mukherjee A. S. Chromosomal basis of dosage compensation in Drosophila. V. Puffwise analysis of gene activity in the X-chromosome of male and female Drosophila hydei. Chromosoma. 1971;36(1):46–59. doi: 10.1007/BF00326421. [DOI] [PubMed] [Google Scholar]
  6. Dobzhansky T. Drosophila Miranda, a New Species. Genetics. 1935 Jul;20(4):377–391. doi: 10.1093/genetics/20.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holmquist G. Transcription rates of individual polytene chromosome bands: effects of gene dose and sex in Drosophila. Chromosoma. 1972;36(4):413–452. doi: 10.1007/BF00336796. [DOI] [PubMed] [Google Scholar]
  8. Lakhotia S. C. Chromosomal basis of dosage compensation in Drosophila. II. The DNA replication patterns of the male X-chromosome in an autosome--X insertion in D. melanogaster. Genet Res. 1970 Jun;15(3):301–307. doi: 10.1017/s0016672300001646. [DOI] [PubMed] [Google Scholar]
  9. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lucchesi J. C. Dosage compensation in Drosophila. Annu Rev Genet. 1973;7:225–237. doi: 10.1146/annurev.ge.07.120173.001301. [DOI] [PubMed] [Google Scholar]
  11. Lucchesi J. C., Rawls J. M., Jr, Maroni G. Gene dosage compensation in metafemales (3X;2A) of Drosophila. Nature. 1974 Apr 12;248(449):564–567. doi: 10.1038/248564a0. [DOI] [PubMed] [Google Scholar]
  12. Lucchesi J. C., Rawls J. M., Jr Regulation of gene function: a comparison of enzyme activity levels in relation to gene dosage in diploids and triploids of Drosophila melanogaster. Biochem Genet. 1973 May;9(1):41–51. doi: 10.1007/BF00485589. [DOI] [PubMed] [Google Scholar]
  13. Lucchesi J. C., Rawls R. M., Jr Regulation of gene function: a comparison of X-linked enzyme activity levels in normal and intersexual triploids of Drosophila melanogaster. Genetics. 1973 Mar;73(3):459–464. doi: 10.1093/genetics/73.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Macknight R H. The Sex-Determining Mechanism of Drosophila Miranda. Genetics. 1939 Mar;24(2):180–201. doi: 10.1093/genetics/24.2.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Macknight R. H., Cooper K. W. The Synapsis of the Sex Chromosomes of Drosophila Miranda in Relation to Their Directed Segregation. Proc Natl Acad Sci U S A. 1944 Dec 15;30(12):384–387. doi: 10.1073/pnas.30.12.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maroni G., Plaut W. Dosage compensation in Drosophila melanogaster triploids. I. Autoradiographic study. Chromosoma. 1973;40(4):361–377. doi: 10.1007/BF00399428. [DOI] [PubMed] [Google Scholar]
  17. Mukherjee A. S., Beermann W. Synthesis of ribonucleic acid by the X-chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature. 1965 Aug 14;207(998):785–786. doi: 10.1038/207785a0. [DOI] [PubMed] [Google Scholar]
  18. Mukherjee A. S., Chatterjee S. N. Chromosomal basis of dosage compensation in Drosophila VIII. Faster replication and hyperactivity of both arms of the X-chromosome in males of Drosophila pseudoobscura and their possible significance. Chromosoma. 1975 Nov 24;53(2):91–105. doi: 10.1007/BF00333038. [DOI] [PubMed] [Google Scholar]
  19. Roehrdanz R. L., Kitchens J. M., Lucchesi J. C. Lack of dosage compensation for an autosomal gene relocated to the X chromosome in Drosophila melanogaster. Genetics. 1977 Mar;85(3):489–496. doi: 10.1093/genetics/85.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sederoff R., Clynes R., Poncz M., Hachtel S. RNA synthesis by exogenous RNA polymerase on cytological preparations of chromosomes. J Cell Biol. 1973 May;57(2):538–550. doi: 10.1083/jcb.57.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seecof R. L., Kaplan W. D., Futch D. G. Dosage compensation for enzyme activities in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1969 Feb;62(2):528–535. doi: 10.1073/pnas.62.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sturtevant A H, Novitski E. The Homologies of the Chromosome Elements in the Genus Drosophila. Genetics. 1941 Sep;26(5):517–541. doi: 10.1093/genetics/26.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tobler J., Bowman J. T., Simmons J. R. Gene modulation in Drosophila: dosage compensation and relocated v + genes. Biochem Genet. 1971 Apr;5(2):111–117. doi: 10.1007/BF00485639. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES