Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):980–983. doi: 10.1073/pnas.75.2.980

Cytotoxicity of 5-fluoro-2'-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate.

B Ullman, M Lee, D W Martin Jr, D V Santi
PMCID: PMC411383  PMID: 147465

Abstract

Protein in vitro inhibition of thymidylate synthase (5,10-methylenetetrahydrofolate:dUMP C-methyltransferase, EC 2.1.1.45) by 5-fluoro-2'-deoxyuridylate requires 5,10-methylenetetrahydrofolate. The cytoxicity of 5-fluoro-2'-deoxyuridine towards cultured L1210 mouse leukemia cells is reduced when intracellular reduced folates are depleted, either by limiting the source in media or by inhibition of dihydrofolate reductase with methotrexate. Likewise, the intracellular amount of 5-fluoro-2'-deoxyuridylate covalently bound to thymidylate synthase in L1210 cells treated with 5-fluoro-2'-deoxyuridine is greatly diminished when cells are depleted of folate cofactors. The folate requirement for optimal growth of L1210 cells is lower than that required for maximal cytotoxicity of 5-fluoro-2'-deoxyuridine. These findings provide a biochemical rationale that may be useful in designing clinical protocols that use 5-fluorinated uracil analogs.

Full text

PDF
983

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERTINO J. R., BOOTH B. A., BIEBER A. L., CASHMORE A., SARTORELLI A. C. STUDIES ON THE INHIBITION OF DIHYDROFOLATE REDUCTASE BY THE FOLATE ANTAGONISTS. J Biol Chem. 1964 Feb;239:479–485. [PubMed] [Google Scholar]
  2. Bareham C. R., Griswold D. E., Calabresi P. Synergism of methotrexate with imuran and with 5-fluorouracil and their effects on hemolysin plaque-forming cell production in the mouse. Cancer Res. 1974 Mar;34(3):571–575. [PubMed] [Google Scholar]
  3. Bertino J. R., Sawicki W. L., Lindquist C. A., Gupta V. S. Schedule-dependent antitumor effects of methotrexate and 5-fluorouracil. Cancer Res. 1977 Jan;37(1):327–328. [PubMed] [Google Scholar]
  4. Bonadonna G., Brusamolino E., Valagussa P., Rossi A., Brugnatelli L., Brambilla C., De Lena M., Tancini G., Bajetta E., Musumeci R. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N Engl J Med. 1976 Feb 19;294(8):405–410. doi: 10.1056/NEJM197602192940801. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. Danenberg P. V., Langenbach R. J., Heidelberger C. Structures of reversible and irreversible complexes of thymidylate synthetase and fluorinated pyrimidine nucleotides. Biochemistry. 1974 Feb 26;13(5):926–933. doi: 10.1021/bi00702a016. [DOI] [PubMed] [Google Scholar]
  7. Dunlap R. B., Harding N. G., Huennekens F. M. Thymidylate synthetase from amethopterin-resistant Lactobacillus casei. Biochemistry. 1971 Jan 5;10(1):88–97. doi: 10.1021/bi00777a014. [DOI] [PubMed] [Google Scholar]
  8. FISCHER G. A., SARTORELLI A. C. DEVELOPMENT, MAINTENANCE AND ASSAY OF DRUG RESISTANCE. Methods Med Res. 1964;10:247–262. [PubMed] [Google Scholar]
  9. Galivan J. H., Maley G. F., Maley F. Factors affecting substrate binding in Lactobacillus casei thymidylate synthetase as studied by equilibrium dialysis. Biochemistry. 1976 Jan 27;15(2):356–362. doi: 10.1021/bi00647a018. [DOI] [PubMed] [Google Scholar]
  10. Goldman I. D. The characteristics of the membrane transport of amethopterin and the naturally occurring folates. Ann N Y Acad Sci. 1971 Nov 30;186:400–422. doi: 10.1111/j.1749-6632.1971.tb46996.x. [DOI] [PubMed] [Google Scholar]
  11. Kline I., Venditti J. M., Mead J. A., Tyrer D. D., Goldin A. The antileukemic effectiveness of 5-fluorouracil and methotrexate in the combination chemotherapy of advanced leukemia L1210 in mice. Cancer Res. 1966 May;26(5):848–852. [PubMed] [Google Scholar]
  12. Langenbach R. J., Danenberg P. V., Heidelberger C. Thymidylate synthetase: mechanism of inhibition by 5-fluoro-2'-deoxyuridylate. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1565–1571. doi: 10.1016/0006-291x(72)90892-3. [DOI] [PubMed] [Google Scholar]
  13. Santi D. V., McHenry C. S. 5-Fluoro-2'-deoxyuridylate: covalent complex with thymidylate synthetase. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1855–1857. doi: 10.1073/pnas.69.7.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Santi D. V., McHenry C. S., Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974 Jan 29;13(3):471–481. doi: 10.1021/bi00700a012. [DOI] [PubMed] [Google Scholar]
  15. Sommer H., Santi D. V. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2'-deoxyuridylate and methylenetetrahydrofolate. Biochem Biophys Res Commun. 1974 Apr 8;57(3):689–695. doi: 10.1016/0006-291x(74)90601-9. [DOI] [PubMed] [Google Scholar]
  16. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  17. Tattersall M. H., Jackson R. C., Connors T. A., Harrap K. R. Combination chemotherapy: the interaction of methotrexate and 5-fluorouracil. Eur J Cancer. 1973 Oct;9(10):733–739. doi: 10.1016/0014-2964(73)90064-9. [DOI] [PubMed] [Google Scholar]
  18. Weber G. Enzymology of cancer cells (first of two parts). N Engl J Med. 1977 Mar 3;296(9):486–492. doi: 10.1056/NEJM197703032960905. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES