Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Mar;75(3):1145–1147. doi: 10.1073/pnas.75.3.1145

Increased incorporation of adenosine into adenine nucleotide pools in serum-deprived mammalian cells.

E Rapaport, P C Zamecnik
PMCID: PMC411425  PMID: 274706

Abstract

The effects of serum deprivation on the incorporation of adenosine into the intracellular adenine nucleotide pools by several mamalian cell lines were studied. Cells arrested in the G1 phase of the cell cycle showed increased incorporation of exogenous adenosine into their adenine nucleotide pools as compared with growing cells. This phenomenon is unexpected because salvage pathways from all other preformed nucleosides and bases as well as the de novo synthesis of adenine nucleotides is decreased after arrest of growth by serum deprivation. The incorporation of adenosine into adenine nucleotides may serve as an intracellular signal in the regulation of growth in mammalian cells.

Full text

PDF
1146

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bynum J. W., Volkin E. Wasting of 18 S ribosomal RNA by human myeloma cells cultured in adenosine. J Cell Physiol. 1976 Jun;88(2):197–206. doi: 10.1002/jcp.1040880209. [DOI] [PubMed] [Google Scholar]
  2. Colby C., Edlin G. Nucleotide pool levels in growing, inhibited, and transformed chick fibroblast cells. Biochemistry. 1970 Feb 17;9(4):917–920. doi: 10.1021/bi00806a029. [DOI] [PubMed] [Google Scholar]
  3. Cunningham D. D., Pardee A. B. Transport changes rapidly initiated by serum addition to "contact inhibited" 3T3 cells. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1049–1056. doi: 10.1073/pnas.64.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
  5. Grummt F., Paul D., Grummt I. Regulation of ATP pools, rRNA and DNA synthesis in 3T3 cells in response to serum or hypoxanthine. Eur J Biochem. 1977 Jun 1;76(1):7–12. doi: 10.1111/j.1432-1033.1977.tb11564.x. [DOI] [PubMed] [Google Scholar]
  6. Grummt I., Grummt F. Control of nucleolar RNA synthesis by the intracellular pool sizes of ATP and GTP. Cell. 1976 Mar;7(3):447–453. doi: 10.1016/0092-8674(76)90175-6. [DOI] [PubMed] [Google Scholar]
  7. Hatanaka M., Del Giudice R., Long C. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1401–1405. doi: 10.1073/pnas.72.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hershfield M. S., Snyder F. F., Seegmiller J. E. Adenine and adenosine are toxic to human lymphoblast mutants defective in purine salvage enzymes. Science. 1977 Sep 23;197(4310):1284–1287. doi: 10.1126/science.197600. [DOI] [PubMed] [Google Scholar]
  9. Hershko A., Mamont P., Shields R., Tomkins G. M. "Pleiotypic response". Nat New Biol. 1971 Aug;232(33):206–211. [PubMed] [Google Scholar]
  10. Hilz H., Kaukel E. Divergent action mechanism of cAMP and dibutyryl cAMP on cell proliferation and macromolecular synthesis in HeLa S3 cultures. Mol Cell Biochem. 1973 Jun 27;1(2):229–239. doi: 10.1007/BF01659332. [DOI] [PubMed] [Google Scholar]
  11. Hilz H., Tarnowski W. Opposite effects of cyclic AMP and its dibutyryl derivative on glycogen levels in HeLa cells. Biochem Biophys Res Commun. 1970 Aug 24;40(4):973–981. doi: 10.1016/0006-291x(70)90999-x. [DOI] [PubMed] [Google Scholar]
  12. Ishii K., Green H. Lethality of adenosine for cultured mammalian cells by interference with pyrimidine biosynthesis. J Cell Sci. 1973 Sep;13(2):429–439. doi: 10.1242/jcs.13.2.429. [DOI] [PubMed] [Google Scholar]
  13. Kaukel E., Fuhrmann U., Hilz H. Divergent action of cAMP and dibutyryl cAMP on macromolecular synthesis in HeLa S3 cultures. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1516–1524. doi: 10.1016/0006-291x(72)90886-8. [DOI] [PubMed] [Google Scholar]
  14. Lund P., Cornell N. W., Krebs H. A. Effect of adenosine on the adenine nucleotide content and metabolism of hepatocytes. Biochem J. 1975 Dec;152(3):593–599. doi: 10.1042/bj1520593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McBurney M. W., Whimore G. F. Mutants of chinese hamster cells resistant to adenosine. J Cell Physiol. 1975 Feb;85(1):87–99. doi: 10.1002/jcp.1040850110. [DOI] [PubMed] [Google Scholar]
  16. Meyskens F. L., Williams H. E. Adenosine metabolism in human erythrocytes. Biochim Biophys Acta. 1971 Jun 30;240(2):170–179. doi: 10.1016/0005-2787(71)90654-x. [DOI] [PubMed] [Google Scholar]
  17. Mills G. C., Schmalstieg F. C., Trimmer K. B., Goldman A. S., Goldblum R. M. Purine metabolism in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2867–2871. doi: 10.1073/pnas.73.8.2867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murray A. W., Elliott D. C., Atkinson M. R. Nucleotide biosynthesis from preformed purines in mammalian cells: regulatory mechanisms and biological significance. Prog Nucleic Acid Res Mol Biol. 1970;10:87–119. doi: 10.1016/s0079-6603(08)60562-0. [DOI] [PubMed] [Google Scholar]
  19. Pastan I. H., Johnson G. S., Anderson W. B. Role of cyclic nucleotides in growth control. Annu Rev Biochem. 1975;44:491–522. doi: 10.1146/annurev.bi.44.070175.002423. [DOI] [PubMed] [Google Scholar]
  20. Perrett D., Dean B. The function of adenosine deaminase in the human erythrocyte. Biochem Biophys Res Commun. 1977 Jul 11;77(1):374–378. doi: 10.1016/s0006-291x(77)80207-6. [DOI] [PubMed] [Google Scholar]
  21. Plagemann P. G. Nucleotide pools in Novikoff rat hepatoma cells growing in suspension culture. 3. Effects of nucleosides in medium on levels of nucleotides in separate nucleotide pools for nuclear and cytoplasmic RNA synthesis. J Cell Biol. 1972 Jan;52(1):131–146. doi: 10.1083/jcb.52.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rapaport E., Zamecnik P. C. Incorporation of adenosine into ATP: formation of compartmentalized ATP. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3122–3125. doi: 10.1073/pnas.73.9.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rapaport E., Zamecnik P. C. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988. doi: 10.1073/pnas.73.11.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rozengurt E., Stein W. D., Wigglesworth N. M. Uptake of nucleosides in density-inhibited cultures of 3T3 cells. Nature. 1977 Jun 2;267(5610):442–444. doi: 10.1038/267442a0. [DOI] [PubMed] [Google Scholar]
  25. Schneider E. L., Stanbridge E. J. Comparison of methods for the detection of Mycoplasmal contamination of cell cultures: a review. In Vitro. 1975 Jan-Feb;11(1):20–34. doi: 10.1007/BF02615318. [DOI] [PubMed] [Google Scholar]
  26. Schneider E. L., Stanbridge E. J., Epstein C. J. Incorporation of 3H-uridine and 3H-uracil into RNA: a simple technique for the detection of mycoplasma contamination of cultured cells. Exp Cell Res. 1974 Mar 15;84(1):311–318. doi: 10.1016/0014-4827(74)90411-x. [DOI] [PubMed] [Google Scholar]
  27. Snyder F. F., Seegmiller J. E. The adenosine-like effect of exogenous cyclic AMP upon nucleotide and PP-ribose-P concentrations of cultured human lymphoblasts. FEBS Lett. 1976 Jul 1;66(1):102–106. doi: 10.1016/0014-5793(76)80595-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES