Abstract
31P NMR was used to continuously monitor ATP and inorganic phosphate levels in perfused mouse liver. Under "optimal" conditions, the time resolution of the technique was approximately 1 min. In the absence of any metabolic perturbations the ATP level remained constant for at least 2 hr and decreased by only approximately 20% in 18 hr. Both ATP and inorganic phosphate levels responded to alterations in the oxygen supply to the liver. The half-time for this response was approximately 1 min, and the response to short periods of hypoxia or ischemia was partially reversible. The addition of insulin caused only a minor decrease in the ATP level but significantly decreased the rate of response of ATP and phosphate levels to hypoxia and ischemia.
Full text
PDF![5445](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/151d/411665/3045c64af8fb/pnas00011-0039.png)
![5446](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/151d/411665/58c66cbdcd79/pnas00011-0040.png)
![5447](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/151d/411665/f8ba65cbf481/pnas00011-0041.png)
![5448](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/151d/411665/70e9b9e50f83/pnas00011-0042.png)
![5449](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/151d/411665/d02fe8931a48/pnas00011-0043.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chance B., Nakase Y., Bond M., Leigh J. S., Jr, McDonald G. Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4925–4929. doi: 10.1073/pnas.75.10.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. M., Ogawa S., Rottenberg H., Glynn P., Yamane T., Brown T. R., Shulman R. G. P nuclear magnetic resonance studies of isolated rat liver cells. Nature. 1978 Jun 15;273(5663):554–556. doi: 10.1038/273554a0. [DOI] [PubMed] [Google Scholar]
- Cozzone P. J., Jardetzky O. Phosphorus-31 Fourier transform nuclear magnetic resonance study of mononucleotides and dinucleotides. 1. Chemical shifts. Biochemistry. 1976 Nov 2;15(22):4853–4859. doi: 10.1021/bi00667a016. [DOI] [PubMed] [Google Scholar]
- Czech M. P. Molecular basis of insulin action. Annu Rev Biochem. 1977;46:359–384. doi: 10.1146/annurev.bi.46.070177.002043. [DOI] [PubMed] [Google Scholar]
- Garlick P. B., Radda G. K., Seeley P. J. Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1256–1262. doi: 10.1016/0006-291x(77)91653-9. [DOI] [PubMed] [Google Scholar]
- Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobus W. E., Taylor G. J., 4th, Hollis D. P., Nunnally R. L. Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature. 1977 Feb 24;265(5596):756–758. doi: 10.1038/265756a0. [DOI] [PubMed] [Google Scholar]
- Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
- Scholz R., Thurman R. G., Williamson J. R., Chance B., Bücher T. Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem. 1969 May 10;244(9):2317–2324. [PubMed] [Google Scholar]
- THIERS R. E., VALLEE B. L. Distribution of metals in subcellular fractions of rat liver. J Biol Chem. 1957 Jun;226(2):911–920. [PubMed] [Google Scholar]