Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Dec;76(12):6415–6419. doi: 10.1073/pnas.76.12.6415

Structure of a bacterial photosynthetic membrane

Kenneth R Miller 1
PMCID: PMC411875  PMID: 16592741

Abstract

The internal photosynthetic membranes of a photosynthetic bacterium, Rhodopseudomonas viridis, have been studied with a variety of electron microscope techniques. The membranes are composed of a sheet of apparently identical subunits arranged in a hexagonal fashion. The individual subunits repeat at a distance of 110 Å. Optical transforms have been used to enhance micrographs of this ordered membrane, and the images synthesized in this way show details of each subunit. The individual subunits are asymmetric, differing slightly in appearance at the outer and inner surfaces of the membrane, and these surface patterns seem to be combined in the image of the thylakoid membrane in negative stain. These studies fix a maximum size for the photosynthetic unit of R. viridis and suggest the suitability of this membrane for further diffraction analysis.

Keywords: Rhodopseudomonas viridis, thylakoid membranes, optical transforms, freeze-fracture electron microscopy

Full text

PDF
6418

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arntzen C. J., Armond P. A., Briantais J. M., Burke J. J., Novitzky W. P. Dynamic interactions among structural components of the chloroplast membrane. Brookhaven Symp Biol. 1976 Jun 7;(28):316–337. [PubMed] [Google Scholar]
  2. Dutton P. L., Prince R. C., Tiede D. M., Petty K. M., Kaufmann K. J., Netzel T. L., Rentzepis P. M. Electron transfer in the photosynthetic reaction center. Brookhaven Symp Biol. 1976 Jun 7;(28):213–237. [PubMed] [Google Scholar]
  3. Lombardi L., Prenna G., Okolicsanyi L., Gautier A. Electron staining with uranyl acetate. Possible role of free amino groups. J Histochem Cytochem. 1971 Mar;19(3):161–168. doi: 10.1177/19.3.161. [DOI] [PubMed] [Google Scholar]
  4. Prince R. C., Leigh J. S., Jr, Dutton P. L. Thermodynamic properties of the reaction center of Rhodopseudomonas viridis. In vivo measurement of the reaction center bacteriochlorophyll-primary acceptor intermediary electron carrier. Biochim Biophys Acta. 1976 Sep 13;440(3):622–636. doi: 10.1016/0005-2728(76)90047-5. [DOI] [PubMed] [Google Scholar]
  5. Silva M. T., Santos Mota J. M., Melo J. V., Guerra F. C. Uranyl salts as fixatives for electron microscopy. Study of the membrane ultrastructure and phospholipid loss in bacilli. Biochim Biophys Acta. 1971 Jun 1;233(3):513–520. doi: 10.1016/0005-2736(71)90151-9. [DOI] [PubMed] [Google Scholar]
  6. Staehelin L. A., Armond P. A., Miller K. R. Chloroplast membrane organization at the supramolecular level and its functional implications. Brookhaven Symp Biol. 1976 Jun 7;(28):278–315. [PubMed] [Google Scholar]
  7. Thornber J. P., Olson J. M., Williams D. M., Clayton M. L. Isolation of the reaction center of Rhodopseudomonas viridis. Biochim Biophys Acta. 1969 Feb 25;172(2):351–354. doi: 10.1016/0005-2728(69)90083-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES