Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):o771. doi: 10.1107/S1600536814012793

N-[(1-Benzoyl­piperidin-4-yl)meth­yl]benzamide

K Prathebha a, D Reuben Jonathan b, Sathya Shanmugam a, G Usha a,*
PMCID: PMC4120622  PMID: 25161560

Abstract

In the title compound, C20H22N2O2, the piperidine ring adopts a chair conformation. The phenyl rings are inclined to one another by 80.1 (1)° and make dihedral angles of 46.1 (1) and 40.2 (1)° with the mean plane of the piperidine ring. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. C—H⋯O inter­actions further link the mol­ecules, forming a three-dimensional supramolecular network.

Related literature  

For the synthesis of the title compound, see: Prathebha et al. (2013); Venkatraj et al. (2008). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004); Sergeant & May (1970). For bond-length data, see: Allen et al. (1987). For related structures, see: Al-abbasi et al. (2010); Ávila et al. (2010). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-70-0o771-scheme1.jpg

Experimental  

Crystal data  

  • C20H22N2O2

  • M r = 322.40

  • Triclinic, Inline graphic

  • a = 9.8039 (2) Å

  • b = 10.4453 (2) Å

  • c = 10.6765 (2) Å

  • α = 62.208 (1)°

  • β = 66.009 (1)°

  • γ = 68.150 (1)°

  • V = 860.80 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.982, T max = 0.984

  • 12912 measured reflections

  • 3562 independent reflections

  • 2929 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.125

  • S = 1.04

  • 3531 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814012793/bt6968sup1.cif

e-70-0o771-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012793/bt6968Isup2.hkl

e-70-0o771-Isup2.hkl (169.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012793/bt6968Isup3.cml

CCDC reference: 987515

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.97 2.60 3.5548 (18) 169
C3—H3⋯O2ii 0.93 2.47 3.3803 (17) 167
N2—H2A⋯O2ii 0.86 2.11 2.9401 (15) 162
C8—H8⋯O1iii 0.93 2.52 3.4506 (19) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Professor Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

supplementary crystallographic information

S1. Comment

Biologically active alkaloids of substituted piperidines have been targeted for their total or partial synthesis (Ramalingan et al., 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased doses. In addition, the nucleus also possesses analgesic, anglionic blocking and anesthetic properties as well (Sergeant & May, 1970). We report in this communication, the synthesis and crystal structure of a new piperidine derivative.

The phenyl rings form dihedral angles of 46.1 (1)° and 40.2 (1)°, respectively, with the best plane through the piperidine ring atoms. The C—N distances [1.337 (2)- 1.468 (2) Å] are in the normal range and are in good agreement with values of a similar reported structure (Ávila et al., 2010). The piperdine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of q2 = 0.0351 (1) Å, phi2 = -50.61 (3)° q3 = 0.5633 (1) Å, QT = 0.5644 (2) Å and θ2 = 3.67 (2)°.

The crystal packing shows N-H···O hydrogen bonds linking the molecules to centrosymmetric dimers (Fig. 2).

S2. Experimental

The procedure (Prathebha et al., 2013, Venkatraj et al., 2008) adopted in the synthesis of the typical diamide is as follows: In a 250 mL round-bottomed flask 4-methyl piperidine (0.01 mol) was taken in, to which 100 mL of ethyl methyl ketone was added and stirred at room temperature. After 5 minutes, triethylamine (0.02 mol) was added and the mixture was stirred for 15 minutes. Then, benzoyl chloride (0.02 mol) was added and the reaction mixture was stirred at room temperature for about 2 h. A white precipitate of triethyl ammonium chloride was formed. It was filtered and the filterate was evaporated to get the crude product. The crude product was recrystallized twice from ethyl methyl ketone. Melting Point: 127 °C, yield: 85%.

S3. Refinement

H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.93 - 0.97 Å and N—H. 87 with Uiso(H) = 1.5Ueq (C-methyl) and = 1.2U eq(N,C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.

Fig. 3.

Fig. 3.

Experimental procedure

Crystal data

C20H22N2O2 Z = 2
Mr = 322.40 F(000) = 344
Triclinic, P1 Dx = 1.244 Mg m3Dm = 1.188 Mg m3Dm measured by not measured
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8039 (2) Å Cell parameters from 3562 reflections
b = 10.4453 (2) Å θ = 2.3–26.5°
c = 10.6765 (2) Å µ = 0.08 mm1
α = 62.208 (1)° T = 293 K
β = 66.009 (1)° Block, colourless
γ = 68.150 (1)° 0.22 × 0.20 × 0.20 mm
V = 860.80 (3) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3562 independent reflections
Radiation source: fine-focus sealed tube 2929 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
ω and φ scan θmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.982, Tmax = 0.984 k = −13→13
12912 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.1352P] where P = (Fo2 + 2Fc2)/3
3531 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8259 (2) 0.13083 (19) −0.42562 (19) 0.0716 (5)
H1 0.8464 0.0451 −0.4428 0.086*
C2 0.9233 (2) 0.14731 (18) −0.37349 (19) 0.0687 (4)
H2 1.0097 0.0725 −0.3554 0.082*
C3 0.89322 (16) 0.27493 (16) −0.34793 (16) 0.0557 (3)
H3 0.9605 0.2865 −0.3147 0.067*
C4 0.76373 (14) 0.38484 (14) −0.37167 (13) 0.0462 (3)
C5 0.6671 (2) 0.3663 (2) −0.4234 (2) 0.0706 (4)
H5 0.5791 0.4396 −0.4391 0.085*
C6 0.6987 (2) 0.2410 (2) −0.4522 (2) 0.0805 (5)
H6 0.6338 0.2313 −0.4895 0.097*
C7 0.75109 (14) 0.87255 (14) 0.19275 (14) 0.0459 (3)
C8 0.68184 (17) 0.89913 (16) 0.32258 (16) 0.0555 (3)
H8 0.6521 0.8227 0.4115 0.067*
C9 0.65695 (19) 1.03945 (18) 0.32005 (18) 0.0655 (4)
H9 0.6091 1.0571 0.4075 0.079*
C10 0.7016 (2) 1.15236 (17) 0.1911 (2) 0.0705 (4)
H10 0.6842 1.2465 0.1904 0.085*
C11 0.7722 (2) 1.12603 (19) 0.0627 (2) 0.0797 (5)
H11 0.8044 1.2023 −0.0254 0.096*
C12 0.7961 (2) 0.98681 (18) 0.06295 (17) 0.0687 (4)
H12 0.8428 0.9704 −0.0251 0.082*
C13 0.74162 (16) 0.54026 (13) 0.13846 (15) 0.0491 (3)
H13A 0.6493 0.5026 0.1824 0.059*
H13B 0.8142 0.4717 0.1942 0.059*
C14 0.80986 (15) 0.55186 (13) −0.02091 (15) 0.0489 (3)
H14A 0.8293 0.4553 −0.0244 0.059*
H14B 0.9072 0.5801 −0.0608 0.059*
C15 0.70474 (15) 0.66528 (13) −0.11683 (15) 0.0485 (3)
H15 0.6124 0.6289 −0.0839 0.058*
C16 0.65720 (17) 0.81395 (14) −0.09792 (16) 0.0545 (3)
H16A 0.7453 0.8581 −0.1435 0.065*
H16B 0.5798 0.8810 −0.1483 0.065*
C17 0.59429 (16) 0.79586 (15) 0.06342 (16) 0.0535 (3)
H17A 0.5726 0.8908 0.0712 0.064*
H17B 0.4992 0.7629 0.1067 0.064*
C18 0.78445 (14) 0.71670 (14) 0.20002 (14) 0.0455 (3)
C19 0.78213 (19) 0.68686 (15) −0.27908 (16) 0.0573 (3)
H19A 0.7154 0.7658 −0.3369 0.069*
H19B 0.8762 0.7184 −0.3109 0.069*
C20 0.71745 (15) 0.52476 (14) −0.34233 (14) 0.0483 (3)
N1 0.70509 (12) 0.68746 (11) 0.14379 (12) 0.0470 (3)
N2 0.81811 (14) 0.55385 (12) −0.30954 (13) 0.0534 (3)
H2A 0.9056 0.4929 −0.3064 0.064*
O1 0.59104 (12) 0.60806 (12) −0.34789 (13) 0.0697 (3)
O2 0.88170 (13) 0.62016 (11) 0.25938 (13) 0.0689 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0865 (11) 0.0708 (10) 0.0764 (10) −0.0293 (9) −0.0096 (9) −0.0448 (9)
C2 0.0719 (10) 0.0632 (9) 0.0812 (11) −0.0047 (7) −0.0229 (8) −0.0417 (8)
C3 0.0563 (8) 0.0607 (8) 0.0644 (8) −0.0080 (6) −0.0217 (6) −0.0346 (7)
C4 0.0523 (7) 0.0514 (7) 0.0393 (6) −0.0144 (5) −0.0127 (5) −0.0186 (5)
C5 0.0704 (10) 0.0781 (11) 0.0874 (11) −0.0067 (8) −0.0393 (9) −0.0430 (9)
C6 0.0848 (12) 0.0992 (13) 0.0971 (13) −0.0290 (10) −0.0304 (10) −0.0573 (11)
C7 0.0473 (7) 0.0477 (7) 0.0529 (7) −0.0087 (5) −0.0160 (5) −0.0267 (6)
C8 0.0653 (8) 0.0561 (8) 0.0526 (7) −0.0163 (6) −0.0129 (6) −0.0274 (6)
C9 0.0734 (10) 0.0675 (9) 0.0698 (9) −0.0176 (7) −0.0082 (8) −0.0455 (8)
C10 0.0833 (11) 0.0542 (8) 0.0871 (11) −0.0199 (8) −0.0168 (9) −0.0393 (8)
C11 0.1130 (14) 0.0594 (9) 0.0692 (10) −0.0401 (9) −0.0106 (10) −0.0232 (8)
C12 0.0919 (11) 0.0662 (9) 0.0542 (8) −0.0308 (8) −0.0042 (8) −0.0314 (7)
C13 0.0590 (7) 0.0381 (6) 0.0579 (8) −0.0068 (5) −0.0231 (6) −0.0217 (5)
C14 0.0568 (7) 0.0382 (6) 0.0582 (8) −0.0033 (5) −0.0214 (6) −0.0244 (5)
C15 0.0561 (7) 0.0432 (7) 0.0580 (8) −0.0076 (5) −0.0229 (6) −0.0251 (6)
C16 0.0682 (8) 0.0403 (7) 0.0666 (8) 0.0011 (6) −0.0362 (7) −0.0249 (6)
C17 0.0558 (7) 0.0474 (7) 0.0720 (9) 0.0045 (6) −0.0318 (7) −0.0344 (6)
C18 0.0471 (6) 0.0467 (7) 0.0497 (7) −0.0062 (5) −0.0158 (5) −0.0249 (5)
C19 0.0773 (9) 0.0465 (7) 0.0576 (8) −0.0108 (6) −0.0268 (7) −0.0228 (6)
C20 0.0530 (7) 0.0493 (7) 0.0442 (6) −0.0080 (6) −0.0163 (5) −0.0190 (5)
N1 0.0534 (6) 0.0408 (5) 0.0580 (6) −0.0019 (4) −0.0242 (5) −0.0265 (5)
N2 0.0609 (7) 0.0520 (6) 0.0609 (7) −0.0032 (5) −0.0262 (5) −0.0314 (5)
O1 0.0602 (6) 0.0635 (6) 0.0921 (8) 0.0024 (5) −0.0320 (6) −0.0379 (6)
O2 0.0756 (7) 0.0571 (6) 0.0973 (8) 0.0054 (5) −0.0534 (6) −0.0382 (6)

Geometric parameters (Å, º)

C1—C6 1.369 (3) C13—N1 1.4665 (14)
C1—C2 1.377 (2) C13—C14 1.5166 (18)
C1—H1 0.9300 C13—H13A 0.9700
C2—C3 1.3854 (19) C13—H13B 0.9700
C2—H2 0.9300 C14—C15 1.5272 (18)
C3—C4 1.3782 (19) C14—H14A 0.9700
C3—H3 0.9300 C14—H14B 0.9700
C4—C5 1.3788 (19) C15—C19 1.5236 (19)
C4—C20 1.5026 (17) C15—C16 1.5319 (16)
C5—C6 1.378 (2) C15—H15 0.9800
C5—H5 0.9300 C16—C17 1.517 (2)
C6—H6 0.9300 C16—H16A 0.9700
C7—C12 1.376 (2) C16—H16B 0.9700
C7—C8 1.3830 (18) C17—N1 1.4610 (16)
C7—C18 1.5065 (16) C17—H17A 0.9700
C8—C9 1.3823 (19) C17—H17B 0.9700
C8—H8 0.9300 C18—O2 1.2277 (15)
C9—C10 1.363 (2) C18—N1 1.3367 (16)
C9—H9 0.9300 C19—N2 1.4573 (16)
C10—C11 1.369 (2) C19—H19A 0.9700
C10—H10 0.9300 C19—H19B 0.9700
C11—C12 1.383 (2) C20—O1 1.2270 (16)
C11—H11 0.9300 C20—N2 1.3387 (17)
C12—H12 0.9300 N2—H2A 0.8600
C6—C1—C2 119.84 (14) C13—C14—C15 112.38 (10)
C6—C1—H1 120.1 C13—C14—H14A 109.1
C2—C1—H1 120.1 C15—C14—H14A 109.1
C1—C2—C3 120.26 (15) C13—C14—H14B 109.1
C1—C2—H2 119.9 C15—C14—H14B 109.1
C3—C2—H2 119.9 H14A—C14—H14B 107.9
C4—C3—C2 120.12 (13) C19—C15—C14 111.50 (11)
C4—C3—H3 119.9 C19—C15—C16 109.95 (11)
C2—C3—H3 119.9 C14—C15—C16 109.78 (10)
C3—C4—C5 118.85 (13) C19—C15—H15 108.5
C3—C4—C20 124.40 (11) C14—C15—H15 108.5
C5—C4—C20 116.74 (12) C16—C15—H15 108.5
C6—C5—C4 121.14 (15) C17—C16—C15 111.99 (11)
C6—C5—H5 119.4 C17—C16—H16A 109.2
C4—C5—H5 119.4 C15—C16—H16A 109.2
C1—C6—C5 119.76 (14) C17—C16—H16B 109.2
C1—C6—H6 120.1 C15—C16—H16B 109.2
C5—C6—H6 120.1 H16A—C16—H16B 107.9
C12—C7—C8 118.99 (12) N1—C17—C16 110.21 (10)
C12—C7—C18 122.18 (12) N1—C17—H17A 109.6
C8—C7—C18 118.70 (12) C16—C17—H17A 109.6
C9—C8—C7 119.91 (13) N1—C17—H17B 109.6
C9—C8—H8 120.0 C16—C17—H17B 109.6
C7—C8—H8 120.0 H17A—C17—H17B 108.1
C10—C9—C8 120.86 (14) O2—C18—N1 122.09 (11)
C10—C9—H9 119.6 O2—C18—C7 119.08 (11)
C8—C9—H9 119.6 N1—C18—C7 118.82 (11)
C9—C10—C11 119.43 (14) N2—C19—C15 113.75 (11)
C9—C10—H10 120.3 N2—C19—H19A 108.8
C11—C10—H10 120.3 C15—C19—H19A 108.8
C10—C11—C12 120.43 (15) N2—C19—H19B 108.8
C10—C11—H11 119.8 C15—C19—H19B 108.8
C12—C11—H11 119.8 H19A—C19—H19B 107.7
C7—C12—C11 120.36 (14) O1—C20—N2 121.84 (12)
C7—C12—H12 119.8 O1—C20—C4 120.44 (12)
C11—C12—H12 119.8 N2—C20—C4 117.72 (11)
N1—C13—C14 109.34 (10) C18—N1—C17 126.14 (10)
N1—C13—H13A 109.8 C18—N1—C13 120.63 (10)
C14—C13—H13A 109.8 C17—N1—C13 112.60 (9)
N1—C13—H13B 109.8 C20—N2—C19 121.23 (11)
C14—C13—H13B 109.8 C20—N2—H2A 119.4
H13A—C13—H13B 108.3 C19—N2—H2A 119.4
C6—C1—C2—C3 −0.1 (3) C12—C7—C18—O2 107.97 (17)
C1—C2—C3—C4 1.3 (2) C8—C7—C18—O2 −67.72 (17)
C2—C3—C4—C5 −1.1 (2) C12—C7—C18—N1 −73.19 (18)
C2—C3—C4—C20 177.72 (13) C8—C7—C18—N1 111.12 (14)
C3—C4—C5—C6 −0.4 (2) C14—C15—C19—N2 63.59 (15)
C20—C4—C5—C6 −179.32 (15) C16—C15—C19—N2 −174.42 (11)
C2—C1—C6—C5 −1.4 (3) C3—C4—C20—O1 −170.49 (13)
C4—C5—C6—C1 1.7 (3) C5—C4—C20—O1 8.4 (2)
C12—C7—C8—C9 0.9 (2) C3—C4—C20—N2 9.15 (19)
C18—C7—C8—C9 176.74 (12) C5—C4—C20—N2 −172.00 (13)
C7—C8—C9—C10 −0.8 (2) O2—C18—N1—C17 −176.01 (13)
C8—C9—C10—C11 −0.1 (3) C7—C18—N1—C17 5.18 (19)
C9—C10—C11—C12 1.0 (3) O2—C18—N1—C13 −5.8 (2)
C8—C7—C12—C11 0.0 (2) C7—C18—N1—C13 175.39 (11)
C18—C7—C12—C11 −175.70 (15) C16—C17—N1—C18 110.77 (14)
C10—C11—C12—C7 −1.0 (3) C16—C17—N1—C13 −60.11 (14)
N1—C13—C14—C15 −56.11 (14) C14—C13—N1—C18 −111.16 (13)
C13—C14—C15—C19 174.11 (10) C14—C13—N1—C17 60.29 (14)
C13—C14—C15—C16 52.02 (15) O1—C20—N2—C19 −0.2 (2)
C19—C15—C16—C17 −174.15 (11) C4—C20—N2—C19 −179.78 (11)
C14—C15—C16—C17 −51.14 (15) C15—C19—N2—C20 89.66 (15)
C15—C16—C17—N1 55.05 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13A···O1i 0.97 2.60 3.5548 (18) 169
C3—H3···O2ii 0.93 2.47 3.3803 (17) 167
N2—H2A···O2ii 0.86 2.11 2.9401 (15) 162
C8—H8···O1iii 0.93 2.52 3.4506 (19) 176

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) x, y, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6968).

References

  1. Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  4. Ávila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630. [DOI] [PMC free article] [PubMed]
  5. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424. [DOI] [PMC free article] [PubMed]
  9. Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533. [DOI] [PubMed]
  10. Sergeant, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061–1063.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411–426.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814012793/bt6968sup1.cif

e-70-0o771-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012793/bt6968Isup2.hkl

e-70-0o771-Isup2.hkl (169.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012793/bt6968Isup3.cml

CCDC reference: 987515

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES