Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Aug 15;92(17):7869–7873. doi: 10.1073/pnas.92.17.7869

Frequency encoding in excitable systems with applications to calcium oscillations.

Y Tang 1, H G Othmer 1
PMCID: PMC41247  PMID: 7644505

Abstract

A number of excitable cell types respond to a constant hormonal stimulus with a periodic oscillation in intracellular calcium. The frequency of oscillation is often proportional to the hormonal stimulus, and one says that the stimulus is frequency encoded. Here we develop a theory of frequency encoding in excitable systems and apply it to intracellular calcium oscillations that results from increases in the intracellular level of inositol 1,4,5-triphosphate.

Full text

PDF
7869

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Hajjar R. J., Bonventre J. V. Oscillations of intracellular calcium induced by vasopressin in individual fura-2-loaded mesangial cells. Frequency dependence on basal calcium concentration, agonist concentration, and temperature. J Biol Chem. 1991 Nov 15;266(32):21589–21594. [PubMed] [Google Scholar]
  3. Jacob R., Merritt J. E., Hallam T. J., Rink T. J. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature. 1988 Sep 1;335(6185):40–45. doi: 10.1038/335040a0. [DOI] [PubMed] [Google Scholar]
  4. Meyer T., Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. doi: 10.1146/annurev.bb.20.060191.001101. [DOI] [PubMed] [Google Scholar]
  5. Osada S., Okano Y., Saji S., Nozawa Y. Spontaneous Ca2+ release from a caffeine and ryanodine-sensitive intracellular Ca2+ store in freshly prepared hepatocytes. Hepatology. 1994 Feb;19(2):514–517. [PubMed] [Google Scholar]
  6. Rooney T. A., Renard D. C., Sass E. J., Thomas A. P. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem. 1991 Jul 5;266(19):12272–12282. [PubMed] [Google Scholar]
  7. Rooney T. A., Sass E. J., Thomas A. P. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J Biol Chem. 1989 Oct 15;264(29):17131–17141. [PubMed] [Google Scholar]
  8. Sanchez-Bueno A., Cobbold P. H. Agonist-specificity in the role of Ca(2+)-induced Ca2+ release in hepatocyte Ca2+ oscillations. Biochem J. 1993 Apr 1;291(Pt 1):169–172. doi: 10.1042/bj2910169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sanchez-Bueno A., Marrero I., Cobbold P. H. Different modulatory effects of elevated cyclic AMP on cytosolic Ca2+ spikes induced by phenylephrine or vasopressin in single rat hepatocytes. Biochem J. 1993 Apr 1;291(Pt 1):163–168. doi: 10.1042/bj2910163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schöfl C., Brabant G., Hesch R. D., von zur Mühlen A., Cobbold P. H., Cuthbertson K. S. Temporal patterns of alpha 1-receptor stimulation regulate amplitude and frequency of calcium transients. Am J Physiol. 1993 Oct;265(4 Pt 1):C1030–C1036. doi: 10.1152/ajpcell.1993.265.4.C1030. [DOI] [PubMed] [Google Scholar]
  11. Somogyi R., Zhao M., Stucki J. W. Modulation of cytosolic-[Ca2+] oscillations in hepatocytes results from cross-talk among second messengers. The synergism between the alpha 1-adrenergic response, glucagon and cyclic AMP, and their antagonism by insulin and diacylglycerol manifest themselves in the control of the cytosolic-[Ca2+] oscillations. Biochem J. 1992 Sep 15;286(Pt 3):869–877. doi: 10.1042/bj2860869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tanaka Y., Hayashi N., Kaneko A., Ito T., Miyoshi E., Sasaki Y., Fusamoto H., Kamada T. Epidermal growth factor induces dose-dependent calcium oscillations in single fura-2-loaded hepatocytes. Hepatology. 1992 Aug;16(2):479–486. doi: 10.1002/hep.1840160229. [DOI] [PubMed] [Google Scholar]
  13. Tang Y., Othmer H. G. A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J. 1994 Dec;67(6):2223–2235. doi: 10.1016/S0006-3495(94)80707-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Woods N. M., Cuthbertson K. S., Cobbold P. H. Phorbol-ester-induced alterations of free calcium ion transients in single rat hepatocytes. Biochem J. 1987 Sep 15;246(3):619–623. doi: 10.1042/bj2460619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Woods N. M., Cuthbertson K. S., Cobbold P. H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature. 1986 Feb 13;319(6054):600–602. doi: 10.1038/319600a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES